Community Resilience to Climate Change: Theory, Research and Practice

42 General Resilience to Cope with Extreme Events by Stephen R. Carpenter, Kenneth J. Arrow, Scott Barrett, Reinette Biggs, William A. Brock, Anne-Sophie Crépin, Gustav Engström, Carl Folke, Terry P. Hughes, Nils Kautsky, Chuan-Zhong Li, Geoffrey McCarney, Kyle Meng, Karl-Göran Mäler, StephenPolasky, Marten Scheffer, Jason Shogren, Thomas Sterner, Jeffrey R. Vincent, BrianWalker, Anastasios Xepapadeas and Aart de Zeeuw This article was originally published in Sustainability, 4(12), 2012. https://doi.org/10.3390/su4123248 This work is licensed under a Creative Commons Attribution 3.0 Unported (CC BY 3.0) license. ABSTRACT Resilience to specified kinds of disasters is an active area of research and practice. However, rare or unprecedented disturbances that are unusually intense or extensive require a more broad-spectrum type of resilience. General resilience is the capacity of social- ecological systems to adapt or transform in response to unfamiliar, unexpected and extreme shocks. Conditions that enable general resilience include diversity, modularity, openness, reserves, feedbacks, nestedness, monitoring, leadership, and trust. Processes for building general resilience are an emerging and crucially important area of research. Keywords: extreme events; general resilience; polycentric governance; resilience; social-ecological system 1. INTRODUCTION Extreme events sometimes have long-lasting effects on social-ecological systems. Examples include storms such as Hurricane Katrina, wildfires like those in eastern Australia in 2009 or western North America in 2012, deep droughts such as the North American dust bowl, and the earthquake and tsunami that triggered the Fukushima disaster. Each of these events caused extensive losses and evoked searching reassessments of policies and practices for managing social-ecological systems. Resilience, in the context of environmental management and sustainability, is the capacity of a social-ecological system to absorb disturbance, reorganize, and thereby retain essential functions, structures and feedbacks [1]. A rich and growing literature addresses specified resilience, the resilience of a particular aspect of a social-ecological system to a particular kind of disturbance [2]. For example, management of catchments in Australia seeks to avoid a water-table threshold that salinizes the soil and thereby destroys the fertility of agricultural land [1]. Vulnerability is a related concept that considers the stresses that lead to threshold changes in social-ecological systems. More specifically, “vulnerability is the state of susceptibility to harm from exposure to stresses associated with environmental and social change and from the absence of capacity to adapt” [2,3]. For well-characterized shocks, there is often a good deal of information that is relevant to specified resilience. Risk analyses for large storms, earthquakes, floods, fires and other kinds of disturbance regimes are informed by existing knowledge. Even though each event is random, similar events have been seen before, and experience provides a basis for building specified resilience. For rather well-characterized hazards, The World Economic Forum [4] identifies several strategies that build specified resilience. These include monitoring hazards and communicating risk (through early warning systems, for example), social-physical strengthening (such as protection of power, water and sanitation plants, diversification of supply chains, and establishment of ecological buffers), sharing of financial risk (using insurance as well as instruments such as weather derivatives or catastrophe bonds), and disaster preparedness (e.g. training, or establishing reserves of pharmaceuticals). Numerous case studies provide practical information for building specified resilience to particular shocks [1,5]. Other large-consequence events are outside the scope of experience. For example, no one foresaw that changes in animal feeding practices would lead to emergence of bovine spongiform encephalitis or mad cow disease [6]. In another recent case, the Honshu earthquake of 2011 was unusually powerful. It triggered a tsunami of 14 m that breached seawalls designed for the expected maximum wave height of 5.7 m. The tsunami damaged nuclear power stations by shutting down back up diesel generators which were situated on the assumption that the sea walls would hold [7]. Extreme events that are unusually intense or extensive require a more all-purpose kind of resilience. General resilience is the capacity to absorb shocks of all kinds, including novel and unforeseen ones. The challenge of building resilience to unknown disturbances is far more difficult than planning for known types of disturbance, and like any management strategy it has a cost [1]. In this article, we discuss some approaches for building general resilience of social-ecological systems. We begin by discussing perceptions of extreme events that increase the need for general resilience. Next we summarize nine elements of general resilience based on the literature. We conclude by discussing some of the problems of implementing general resilience.

RkJQdWJsaXNoZXIy NTc4NTAz