Community Resilience to Climate Change: Theory, Research and Practice

Literature Cited 1. Knowlton, K.; Rotkin-Ellman, M.; Geballe, L.; Max, W.; Solomon, G.M. Six climate change-related events in the United States accounted for about $14 billion in lost lives and health costs. Health Aff. 2011, 30 , 1–10. [Google Scholar] https://doi.org/10.1377/hlthaff.2011.0229 2. Huang, G.; Zhou, W.; Cadenasso, M.L. Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD. J. Environ. Manag. 2011, 92 , 1753–1759. [Google Scholar] https://doi.org/10.1016/j.jenvman.2011.02.006 3. Tol, R.S.J. Estimates of the damage costs of climate change. Part 1: Benchmark estimates. Environ. Resour. Econ. 2002, 21 , 47–73. [Google Scholar] https://doi.org/10.1023/A:1014500930521 4. Zhang, K.; Chen, T.H.; Begley, C.E. Impact of the 2011 heat wave on mortality and emergency department visits in Houston, Texas. Environ. Health 2015, 14 , 1–7. [Google Scholar] https://doi.org/10.1186/1476-069X-14-11 5. Knowlton, K.; Rotkin-Ellman, M.; King, G.; Margolis, H.G.; Smith, D.; Solomon, G.; Trent, R.; English, P. The 2006 California heat wave: Impacts on hospitalizations and emergency department visits. Environ. Health Perspect. 2009, 117 , 61–67. [Google Scholar] https://doi.org/10.1289/ehp.11594 6. Dhainaut, J.F.; Claessens, Y.E.; Ginsburg, C.; Riou, B. Unprecedented heat-related deaths during the 2003 heat wave in Paris: Consequences on emergency departments. Crit. Care 2003, 8 , 1–2. [Google Scholar] https://doi.org/10.1186/cc2404 7. Mote, P.W.; Salathé, E.P., Jr. Future climate in the Pacific Northwest. Clim. Chang. 2010, 102 , 29–50. [Google Scholar] https://doi.org/10.1007/s10584- 010-9848-z 8. Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305 , 994–997. [Google Scholar] https://doi.org/10.1126/science.1098704 9. Van Hove, L.W.A.; Jacobs, C.M.J.; Heusinkveld, B.G.; Elbers, J.A.; van Driel, B.L.; Holtslag, A.A.M. Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Build. Environ. 2015, 83 , 91–103. [Google Scholar] https://doi.org/10.1016/j.buildenv.2014.08.029 10. Lee, L.; Chen, L.; Wang, X.; Zhao, J. Use of Landsat TM/ETM+ data to analyze urban heat island and its relationship with land use/cover change. In Proceedings of the 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 24–26 June 2011; pp. 922–927. [Google Scholar] 11. Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108 , 1–24. [Google Scholar] https://doi.org/10.1002/qj.49710845502 12. United Nations Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2014 Revision. Available online : http://esa.un.org/unpd/wup/Publications/Files/WUP2014-Report.pdf ( accessed on 20 November 2017). 13. Voelkel, J.; Shandas, V. Towards systematic prediction of urban heat islands: Grounding measurements, assessing modeling techniques. Climate 2017, 5 , 1–17. [Google Scholar] https://doi.org/10.3390/cli5020041 14. Stone, B., Jr. Urban heat and air pollution: An emerging role for planners in the climate change debate. J. Am. Plan. Assoc. 2005, 71 , 13–25. [Google Scholar] https://doi.org/10.1080/01944360508976402 15. Johnson, D.P.; Wilson, J.S. The socio-spatial dynamics of extreme urban heat events: The case of heat-related deaths in Philadelphia. Appl. Geogr. 2009, 29 , 419–434. [Google Scholar] https://doi.org/10.1016/j.apgeog.2008.11.004 16. Harlan, S.L.; Declet-Barreto, J.H.; Stefanov, W.L.; Petitti, D.B. Neighborhood effects on heat deaths: Social and environmental predictors of vulnerability in Maricopa County, Arizona. Environ. Health Perspect. 2013, 121 , 197–204. [Google Scholar] https://doi.org/10.1289/ehp.1104625 17. Turner, B.L.; Kasperson, R.E.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Kasperson, J.X.; Luers, A.; Martello, M.L.; et al. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. USA 2003, 100 , 8074–8079. [Google Scholar] https://doi.org/10.1073/pnas.1231335100 18. Sexton, K. Sociodemographic aspects of human susceptibility to toxic chemicals: Do class and race matter for realistic risk assessment? Environ. Toxicol. Pharmacol. 1997, 4 , 261–269. [Google Scholar] https://doi.org/10.1016/S1382-6689(97)10020-5 19. Grothmann, T.; Patt, A. Adaptive capacity and human cognition: The process of individual adaptation to climate change. Glob. Environ. Chang. 2005, 15 , 199–213. [Google Scholar] https://doi.org/10.1016/j.gloenvcha.2005.01.002 20. Yohe, G.; Tol, R.S.J. Indicators for social and economic coping capacity—Moving toward a working definition of adaptive capacity. Glob. Environ. Chang. 2002, 12 , 25–40. [Google Scholar] https://doi.org/10.1016/S0959-3780(01)00026-7 21. Howard, L. The Climate of London: Deduced from Meteorological Observations Made at Different Places in the Neighbourhood of the Metropolis ; W. Phillips: London, UK, 1820; ISBN 978-144-602-480-5. [Google Scholar] 22. Debbage, N.; Shepherd, J.M. The urban heat island effect and city contiguity. Comput. Environ. Urban Syst. 2015, 54 , 181–194. [Google Scholar] https://doi.org/10.1016/j.compenvurbsys.2015.08.002

RkJQdWJsaXNoZXIy NTc4NTAz