

ETM 510 Energy Demand Forecasting

Dr. Timothy Anderson, Dr. Sule Balkan

Project By:

Apeksha Gupta

Contents

Introduction	. 3
Literature Review	.3
Methodology	.4
Approach 1 (Holtwinters model)	. 5
Approach 2 (ARIMA Function)	.6
Approach 3 (ARIMA Matrix)	. 8
Analysis and Conclusion1	12
Next Steps1	12
References:1	13
Exhibit1	14

-igure 1 Holtwinters model	5
-igure 2: ARIMA model chart	7
-igure 3 What is Quantile [13]	7
Figure 4 February 10th : load demand graph for Feb 2011 to 2016	8
-igure 5: March 1st load demand graph for march 2011 to 2016	8
Figure 6: March 21 st Load Demand graph for march 2011 to 2016	8
igure 7:April 20th load demand graph for april 2011 to 2016	9
Figure 8: 3 AM demand graph for Feb, March and April for 2011 to 2016	9
igure 9: 9 AM demand graph for Feb, March and April for 2011 to 2016	0
igure 10: 3 PM demand graph for Feb, March and April for 2011 to 2016	0
-igure 11: Hourly Graph of Forecasted Load for March 1 st 20171	2

Table 1: Holtwinters Model Results	14
Table 2: ARIMA model Result	16
Table 3 : Final Data for April 2017	18

Introduction

Energy load forecasting is a major business problem in the electric power industry. A lot of effort is put in this field by the researchers and industry experts to estimate load. In the recent times, technological development, renewable integration requirements and aging infrastructure has made the energy forecasting more and more important to energy system operations and its planning [1] This project is based on participation in worldwide energy forecasting competition GEFCom for 2017. With the growing need of load forecasting, this competition is an effort to bring together the very advanced and sophisticated techniques and methodologies to predict the demand of energy using hierarchical probabilistic energy forecasting and has participants from various countries. This report explains the learning process and the entire journey of participation in this competition. This process involves understanding the concepts of R as R was chosen as the analysis tool. It also includes understanding the concepts of Forecasting and specific to weather forecasting. Competition was designed in a way to raise the level of participants every week. Every 2 weeks, there was a submission and then there was good amount of time to look back and analyze the results and improve on it [2] [1] To provide a brief description of the competition, it had a bi level setup i.e. a 2 month qualifying match with 2 tracks and a 1 month final match on a large scale problem [2]

The qualifying match included two tracks which included forecasting the total and zonal loads of ISO New England. The 2 tracks are [2][1]

- Defined Data Track This track restricts the contestant's n what data to be used. The data is available from the ISO New England's website and we were not allowed to go beyond the demand and temperature data (DryBulb and DewPnt) in the files. Another data that could be use was of the federal holidays and infer days of week to identify the demand correlation between different days of the week.
- Open Data Track This track allows contestants to explore various channels to gather more information including weather channels, economy information, and the penetration of solar PV published by US government websites.

The final match has only one forecasting track with more real world data and open to top teams from the qualifying matches

This report discusses in detail the different phases of learning and analysis done during the course. How the perspective, level of understanding and skillset of performing demand forecasting went from beginner to an intermediary level. Models used to analyze the data with different parameters are discussed in detail in the following sections. Analysis helps in learning that there is never a 100% correct prediction. There is always a chance of 10% or more error. Different parameters play a critical role in analyzing data and brings up interesting results.

Literature Review

With the emerging technologies like electric vehicles, micro grids, rooftop solar panels etc. are bringing a lot of uncertainty to the demand of energy at these times. Therefore, it is very important area of research in the current environment. Loa forecasting is important not only or the electrical companies but also by other business entities like regulatory commissions, big industrial companies, banks etc. Forecasting process can be grouped in 4 categories and are different in the term used for forecasting [3]

- 1) Very Short term load forecasting
- 2) Short term load forecasting
- 3) Medium term load forecasting
- 4) Long term load forecasting

Very short term forecasting process is to forecast for next hours, short term is for next day, Medium term forecasting talks about 2-3 weeks and long term load forecasting focuses on forecasting for 1 or more years [3].

Probabilistic Load forecasting (PLFs) can be used for various cases like stochastic unit commitment, planning the power supply, forecasting price, equipment failure prediction etc.

Load forecasting techniques are generally classified in 2 groups 1) Statistical Techniques 2) Artificial Intelligence Techniques. Statistical techniques include MLR models, autoregressive and moving average (ARMA) models, semi-parametric additive models and exponential smoothing models [3]

Exponential Smoothing model assigns weights to the past observations in time series. These weights decrease exponentially over time. Holtwinters model is an example of triple exponential smoothing model. This model was the first model to be used for this project and on further study realized that exponential smoothing is not the best model to consider as per various researchers as it has lower data requirements as compared to other models. The reason being that load forecasting id heavily affected by the weather conditions. Since this techniques does not use meteorological forecasts, load forecasting becomes challenging due to the volatile nature of weather changes [3].

Autoregressive moving average model (ARIMA) provides as "parsimonious description of a stationary stochastic process in terms of two polynomials, one an auto regression and the other a moving average. Since the hourly electricity demand series is well-known to be nonstationary, ARIMA models, which are a generalization of ARMA models, are often used for load forecasting purposes. ARMA models can also be generalized to include exogenous variables, giving ARMAX models." [3] Therefore, ARIMA model was the next model that was used for load forecasting.

Artificial Neural Networks model is the most widely used model for load forecasting across the industries. In this model, the forecaster does not have to specify the input and output variables. Rather, by reading the past data, and learning the patterns from historical data, the input variables and demand are constructed [3] It also provide the advantage of handling nonlinear data and is often able to provide very accurate results. However, there are some challenges with this model too. It lacks interpretability and there is also an overfitting issue associate with it [4]. Although it is a strong tool but due to these limitations and due to the limitation of me not having strong coding background, I decided to rule out as an option.

Next level of challenge in this competition is to forecast the hourly demand of load. For most short and medium term load forecasting the major question is when and how much the demand will be. To understand that, it is important to understand that what are the parameters impacting load. When is the consumption highest, and what is changing the pattern. Further research states that statistical approaches are preferred by the researchers and industry experts due to the accuracy and interpretability [4] Time series approach has been expensively used while performing short term load forecasting [4]

Multiple regression is used to model the load with linear function of various independent variables. For example, the multiple regression is used to understand if the load forecasting depends on the hour of the day or the weather of the day as well or not. If it does depend on either of these, what is the dependency?

Methodology

Forecasting is not a straight forward series of steps to be executed. It is a collection of various steps. There is no exact correct or wrong forecast. It depends on what variables are considered while forecasting. The approach in this project was to start with something simple to get accustomed to using R [5] [6] [7] [8][9]

and understanding the basic concepts of forecasting. Knowledge has evolved since then. Different approaches and models were adopted and then tested to see if the results were better from last time. Below are the various models adopted and we will discuss them in detail in this report.

Approach 1 (Holtwinters model)

Energy demand data is available for various years in a time series format. Time series means that data is progressing after each point. I figured that my data is a perfect example of time series. Further, Holtwinters model is an advanced version of Naïve Method, Simple Average, Moving average and weighted moving average. This model is also known as Triple Exponential Smoothing model which can be used to forecast data points which are in time series which means that data is seasonal and repetitive over some period. [10][11]. TO start with the forecast, I took demand data of March for last 3 years 2014, 2015 and 2016. The data was arranged in the rows which mean that row number 1 to 24 were for March 1st 2014 and next 24 rows would be March 2nd and so on. The trial here was to predict first 200 rows i.e. around 8 days. Below is the code for this simplest model that I worked on [11].

```
demandseriesforecast <- HoltWinters(Serialanddemand,beta=FALSE,gamma=FALSE)
> demandseriesforecast
```

```
plot(demandseriesforecast)
```

```
> demandseriesforecast2 <-forecast.HoltWinters(demandseriesforecast,h=200)</pre>
```

```
> plot.forecast(demandseriesforecast2)
```

> demandseriesforecast2

FIGURE 1 HOLTWINTERS MODEL

Challenge: The results for first 200 rows of prediction from this model were not convincing as they result ed in same values for all rows and only difference was in the alpha values for low 80, high 80, low 95 and high 95. Also, the challenges as described in the earlier section led to the realization that it is not the bes t approach for load forecasting. For more detailed data result, refer Table 1 in Exhibits Hence, this was not a correct approach and further research led me to another forecasting model as discussed in next points

Approach 2 (ARIMA Function)

Autoregressive Integrated Moving Average (ARIMA) model as explained in the earlier section was chosen as the second approach for forecasting load. The function used in R for the same is called as "Auto.arima()" and qnorm() function is being used for the quantile forecast from 10 % to 90% [11]. Similar to the first approach, this approach changes the model from Holtwinters (Exponential Smoothing model) to the ARIMA model. However, the dataset was of Rhode Island for all months for 3 years 2014, 2015 and 2016. It was assumed that data can be forecasted for Jan2017 to March 2017. Therefore, number of points/ rows to be forecasted i.e. "h"= 2160.

Sum(Days in Jan 2017+Feb 2017+March 2017)*24 hours

(31+28+31)*24 = 2160

This function forms a matrix with 9 columns and 2160 rows for forecasted values. Below is the code for forecasting [11] [9]

```
View(RIdata3years)
fitRI<-auto.arima(RIdata3years)
fcRI<-forecast(fitRI,h=2160,level=95)</pre>
```

```
qfRI<-matrix(0,nrow=9,ncol=2160)
mRI<-fcRI$mean
sRI<-(fcRI$upper-fcRI$lower)/1.96/2
for(h in 1:2160)
+ qfRI[,h]<-
qnorm((seq(from=10,to=90,by=10))/100,mRI[h],
sRI[h])
plot(fcRI)
qfRIt<-t(qfRI)
qfRIt
write.csv(qfRIt,"qfRIt.csv")</pre>
```

Challenge: It was realized that this forecasting method considered all the hours of the day as equal and therefore the demand forecast assigned equal values to all the hours of the day and for the entire month of march too. So, when plotted in a graph, the values of March 2017, came out to be a straight line

FIGURE 2: ARIMA MODEL CHART

In addition, quantile values appeared to me negative for some regions. Refer Exhibit 2 for complete data for March [Table 2] in Exhibit. Another interesting thing to note was that all the quantile values were not negative and that too not for all the regions. The values came negative for 10% to 30% of quantiles in some cases. Logically forecast values should be non-negative and therefore further study was required to figure out why the values were coming out negative.

So, I tried to do more research but there is not much literature on the quantiles. However, below figure explains what quantile means. Since normal distribution divides a graph in 2equal parts. Half students do better than the median and half will do bad then the median[12]. Similarly, quantile divides the graph into equal parts. So, 10% quantile divides the graph into 10 equal parts.

Visual illustration of quantiles

FIGURE 3 WHAT IS QUANTILE [13]

Approach 3 (ARIMA Matrix)

On further literature review about correlation between different independent variables [4], I realized that it is important for me to see what is the correlation between the days, hours, and months in previous years? I realized that there is a need to understand data better.

Assumption: I initially assumed that Feb, March and April are more of winter months and therefore should have similar temperature.

So, to confirm my understanding, I took data for 6 years 2011-2016 for Feb – April. The data was divided in 2 different ways:

- Chose 4 days Feb 10th, March 1st, March 25th and April 20th to see the energy demand on these 4 days for all 24 hours of the day. Plotted 4 different graphs for each day with hours of the day on x axis and respective demand on the y axis
- 2) Chose 4 hours of a day i.e. 3 AM, 9AM, 3 PM and 9PM to see how the energy demand varies at these times for all days from February to April for 6 years. Plotted 4 different graphs with total 89 days of each year in the x axis and demand on the y axis. I also discarded the data of 29th February for leap year 2012 and 2016.

Objective of this exercise was to see if it is correct to include data of Feb to April for all the years to predict demand for March and April 2017. The rationale is that if the demand is similar for all times in these months, then it will be logical to use the entire data. However, if the hypothesis is proven wrong, an alternative approach need to be figured out. Below are the graphs

FIGURE 6: MARCH 21ST LOAD DEMAND GRAPH FOR MARCH 2011 TO 2016

FIGURE 7: APRIL 20TH LOAD DEMAND GRAPH FOR APRIL 2011 TO 2016

From the 4 graphs of random days between February and April, it became clear that the demand is different in each month. Demand is higher in February and then gradually decreases in March. Hen from March to April it is again varying between different years. So, it proves that temperature plays a major role in electricity demand. And also, demand is higher in winters when heating is used in homes while less in the transition time between winter and summer. Another important point that comes out of these graphs is that the graph pattern is similar for all days of these months. i.e. demand is lowest in late nights and maximum during 8 AM-9AM and 7 PM -8PM all days.

So, it is incorrect to forecast electricity demand of March using any other month and for that matter even the days of March will not be able to forecast correct values of demand. Therefore, it is important to forecast the value of each day of March using the respective day's demand in past years. This will help get more correct forecast values.

FIGURE 8: 3 AM DEMAND GRAPH FOR FEB, MARCH AND APRIL FOR 2011 TO 2016

FIGURE 9: 9 AM DEMAND GRAPH FOR FEB, MARCH AND APRIL FOR 2011 TO 2016

FIGURE 10: 3 PM DEMAND GRAPH FOR FEB, MARCH AND APRIL FOR 2011 TO 2016

From these graphs, it is clear that the demand of electricity goes down from each month even though it is at the same time. Therefore, it is clear from the above graphs, which are simpler way of understanding the data better instead of using correlation. Therefore the initial assumption has been proven wrong.

From the above analysis it is clear that it would be better to use only March data to predict load from March. Also, according to me, it would e further better to use past data of March 1 to predict data of March 1. Also, the next approach is based on using the 12 AM data of March 1 from last 6 years to predict

1 AM March 2017 demand. Similarly time series will compare the demand of each date with the same date demand for last 6 years and that too at the same time. Refer the below code [11][9]

```
# Converting the list form into vector
df <- data.frame(matrix(unlist(march6years), nrow=4464, byrow=T),stringsAsFactors=FALSE)
invisible(sapply(df,c))
dataFull <- matrix(0.0, nrow=186, ncol=24)
for (day in 1:186){
  for (hour in 1:24){
    dataFull[day, hour] <- df[24*(day-1)+hour,1]
}}
library(forecast)
meanfc <- matrix(0.0, nrow=31, ncol=24)
sfc \leftarrow matrix(0.0, nrow=31, ncol=24)
for (i in 1:24){
  fit <- auto.arima(dataFull[,i])</pre>
  fc <- forecast(fit, h=31, level=95)</pre>
 m <- fc$mean
 s <- (fc$upper-fc$lower)/1.96/2</pre>
 meanfc[,i] <- m</pre>
 sfc[,i] <- s
}
# Quantile forecast at 10 %, 20 %, ....90 %
qf <- matrix(0, nrow=9, ncol=31*24)
qfTemp <- matrix(0, nrow=9, ncol=1)</pre>
for (i in 1:31){
  for(j in 1:24){
  qfTemp[,1] <-qnorm((seq(from=10, to=90, by=10))/100, meanfc[i,j], sfc[i,j])</pre>
  qf[,(i-1)*24 +j] <- qfTemp[,1]
}}
qft <- t(qf)
```

The Above code first coverts the entire data of March for 6 years with 24 rows for each day i.e. total 4464 rows into 186 rows and 24 columns. Which means that each day will be in 1 row and each row will have 24 columns. So, a matrix is formed for this data. Now, once the matrix is created, there will be 189 rows for each day of March and column of 1 AM will be used to predict the demand value of March 1st, 2017. And this loop will be repeated for all the 24 values of hours i.e. "I" in the code. H=31 to forecast 31 values using the past data. Similar qnorm() function is used to forecast the quantiles from 10& to 90%. Please refer the Table 3 excel file in Exhibit for complete data.

Analysis and Conclusion

Approach 3 is the final method used for forecasting load for each of the states. This method has given better results as compared to the other methods and prove to be closely in line with the actual data pattern. We did not see any negative values in the analysis and also, all the values seem to vary as per the pattern found out in earlier analysis. To check the assumption, a graph was plotted for March 1st 2017 load forecasted values to see how the values very in the entire day for all the quantile values.

The below graph shows the exact same pattern for electricity consumption in the entire day where consumption peaks around 7-8 AM and 7-9 PM amongst the 24 ours of a day. Refer figure 11

Therefore, this approach was considered the closest for analysis until date and in the interest of time there were limited options that could be evaluated. Learning from the entire process of forecasting has helped me learn that it is very important to understand data before applying any models for forecasting. It is important to understand how data varies due to several independent variables. Also, what should be used as a parameter to forecast? As in this it was realized that temperature is playing a major role in demand of electricity and therefore, it is not fair to predict load for March using any other data than March.

FIGURE 11: HOURLY GRAPH OF FRORECASTED LOAD FOR MARCH 1ST 2017

Next Steps

Due to limited time I have not been able to explore the possibility of using federal holidays as one of the data points. However given more time I would like to understand from the past years how the demand changed in certain months on the federal holidays and accordingly forecast for year 2017

I would also like to build up skillset in using R as the tool for forecasting. Artificial Neural Networks is one of the models being widely used and taking data from various sources. This would be very important model to try out and I am sure there would be more possible ways and models of forecasting using R. However due to limited visibility and being very new to R, it acted as a limitation. I would like to improve more on that in future.

References:

- 1. Tao Hong, Pierre Pinson, Shu Fan, Hamidreza Zareipour, Alberto Troccoli and Rob J. Hyndman, "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond", International Journal of Forecasting, vol.32, no.3, pp 896-913, July-September, 2016
- Hong, Dr. Tao. "Instructions for GEFCom2017 Qualifying Match." Instructions for GEFCom2017 Qualifying Match. N.p., n.d. Web. 21 Mar. 2017. http://blog.drhongtao.com/2016/10/instructions-for-gefcom2017-qualifying-match.html
- 3. Fraley, Chris, et al. "Probabilistic weather forecasting in R." The R Journal 3.1 (2011): 55-63.
- 4. Hong, Tao, et al. "Modeling and forecasting hourly electric load by multiple linear regression with interactions." *Power and Energy Society General Meeting, 2010 IEEE*. IEEE, 2010.
- 5. Adler, Joseph. *R in a Nutshell*. N.p.: n.p., 2012. Web.
- 6. Kabacoff, Robert I. "R in Action Data Analysis and Graphics with R." *Business Law Today*(1993): n. pag. Web
- 7. 4 "Generating Quantile Forecasts in R." *Hyndsight*. N.p., 08 Sept. 2014. Web. 21 Mar. 2017. http://robjhyndman.com/hyndsight/quantile-forecasts-in-r/
- 8. 5 "Forecast V7 and Ggplot2 Graphics." *Hyndsight*. N.p., 09 May 2016. Web. 21 Mar. 2017. http://robjhyndman.com/hyndsight/forecast7-ggplot2/
- 9. 9 Hyndman, Rob J., and Yeasmin Khandakar. *Automatic time series for forecasting: the forecast package for R*. No. 6/07. Monash University, Department of Econometrics and Business Statistics, 2007.
- Trubetskoy, Gregory. "Grisha Trubetskoy." Holt-Winters Forecasting for Dummies (or Developers) - Part I - Grisha Trubetskoy. N.p., 29 Jan. 2016. Web. 21 Mar. 2017. <u>https://grisha.org/blog/2016/01/29/triple-exponential-smoothing-forecasting/</u>
- 11. 11 Coghlan, Avril. "Using R for Time Series Analysis"." Using R for Time Series Analysis Time Series 0.2 Documentation. N.p., n.d. Web. 21 Mar. 2017. http://a-little-book-of-r-for-timeseries.readthedocs.io/en/latest/src/timeseries.html
- Koenker, Roger, and Kevin F. Hallock. "Quantile Regression." Journal of Economic Perspectives—Volume 15, Number 4 —Fall 2001—Pages 143–156 Quantile Regression(n.d.): n. pag. Web
- 13. Vermorel, Joannès. "Quantile Regression Definition Inventory Optimization Software." *Lokad.com*. N.p., Feb. 2012. Web. 21 Mar. 2017. <u>https://www.lokad.com/quantile-regression-(time-series)-definition</u>

Exhibit

TABLE 1: HOLTWINTERS MODEL RESULTS

	Point	Forecast	Lo 80	ні 80	Lo 95	ні 95
1489		11688.08	10506.767990	12869.40	9881,4180	13494.75
1490		11688.08	10017.507430	13358.66	9133.1586	14243.01
1491		11688 08	9642 077104	13734 09	8558 9875	14817 18
1492		11688 08	9325 572171	14050 59	8074 9349	15301 23
1/03		11688 08	0016 724516	1/320 //	7648 4742	15727 60
1495		11600.00	9040.724310	14525.44	7040.4742	16112 24
1494		11000.00	0/94.0202/4	14010 27	7202.9233	10113.24
1495		11000.00	8362.797377	14813.37	6908.3719	16467.79
1496		11688.08	8347.016389	15029.15	6578.3630	16/9/.80
1497		11688.08	8144.350054	15231.81	6268.4116	1/10/./5
1498		11688.08	7952.663308	15423.50	5975.2520	17400.91
1499		11688.08	7770.344195	15605.82	5696.4190	17679.75
1500		11688.08	7596.140381	15780.02	5429.9973	17946.17
1501		11688.08	7429.055947	15947.11	5174.4637	18201.70
1502		11688.08	7268.283405	16107.88	4928.5833	18447.58
1503		11688.08	7113.157265	16263.01	4691.3383	18684.83
1504		11688.08	6963.121361	16413.04	4461.8782	18914.29
1505		11688.08	6817.705243	16558.46	4239.4834	19136.68
1506		11688.08	6676.506752	16699.66	4023.5390	19352.63
1507		11688.08	6539.178895	16836.99	3813.5142	19562.65
1508		11688.08	6405.419802	16970.74	3608.9473	19767.22
1509		11688 08	6274 964911	17101 20	3409 4337	19966 73
1510		11688 08	6147 580819	17228 58	3214 6166	20161 55
1511		11688 08	6023 060371	17353 10	3024 1790	20351 99
1512		11688 08	5001 218707	17474 05	2837 8382	20538 33
1512		11688 08	5781 800028	17474.95 17504.07	2655 2408	20330.33
1513		11000.00	J761.030030	17711 24	2033.3400	20720.82
1514		11000.00	5004.925002			20099.71
1515		11000.00	5550.1884/4	17020.98	2300.9838	21075.18
1210		11688.08	5437.557729	1/938.61	2128.7300	21247.43
151/		11688.08	5326.920912	18049.24	1959.5256	21416.64
1218		11688.08	5218.1/5/32	18157.99	1/93.2142	21582.95
1519		11688.08	5111.228357	18264.94	1629.6523	21/46.51
1520		11688.08	5005.992464	18370.17	1468.7079	21907.46
1521		11688.08	4902.388425	18473.78	1310.2591	22065.91
1522		11688.08	4800.342602	18575.82	1154.1935	22221.97
1523		11688.08	4699.786733	18676.38	1000.4066	22375.76
1524		11688.08	4600.657399	18775.51	848.8014	22527.36
1525		11688.08	4502.895559	18873.27	699.2875	22676.88
1526		11688.08	4406.446131	18969.72	551.7809	22824.38
1527		11688.08	4311.257639	19064.91	406.2026	22969.96
1528		11688.08	4217.281883	19158.88	262.4791	23113.69
1529		11688.08	4124.473661	19251.69	120.5412	23255.62
1530		11688.08	4032.790507	19343.37	-19.6761	23395.84
1531		11688.08	3942,192473	19433.97	-158.2338	23534.40
1532		11688 08	3852 641917	19523 52	-295 1896	23671 35
1533		11688 08	3764 103326	19612 06	-430 5977	23806 76
1534		11688 08	3676 543149	19699 62	-564 5094	23940 67
1525		11688 02	3280 0306/0	10786 22	-696 0722	2/072 1/
1526		11680 00	2501 222770	10871 02	-030-3133	24073.14
1527		11600.00	2/10 /2/010	10056 74	-020.0334	24204.20
1500		11600.00	3413.424010		-33/./392	24333.90
1530		11600.UO	3333.4/031/	20040.09	-1000.1201	24402.29
1539		11000.00	3232.303985	20123.80	-1213.2355	24589.40
1540		TT088.08	31/0.062561	20206.10	-1339.1046	24/15.27

1541	11688.08	3088.548763	20287.62	-1463.7692	24839.93
1542	11688 08	3007 800402	20368 36	_1587 2632	2/063 /3
1542	11600.00	3007.000702	20300.30	1700 6190	24005.40
1545	11000.00	2927.790311	20440.37	-1/09.0109	25065.76
1544	11088.08	2848.516282	20527.65	-1830.8672	25207.03
1545	11688.08	2769.941004	20606.22	-1951.0378	25327.20
1546	11688.08	2692.052011	20684.11	-2070.1587	25446.32
1547	11688.08	2614.831629	20761.33	-2188.2571	25564.42
1548	11688.08	2538,262929	20837.90	-2305.3588	25681.52
15/0	11688 08	2462 329686	20013 83	-2421 4887	25797 65
1550	11600.00	2702.323000	20010.05		25757.05
1000	11000.00	2307.010330	20969.15	-2550.0705	20912.00
1551	11688.08	2312.30/940	21063.86	-2650.9271	26027.09
1552	11688.08	2238.190151	21137.97	-2764.2805	26140.44
1553	11688.08	2164.649179	21211.52	-2876.7517	26252.92
1554	11688.08	2091.671763	21284.49	-2988.3610	26364.53
1555	11688.08	2019,245143	21356.92	-3099.1280	26475.29
1556	11688 08	1947 357032	21428 81	-3209 0714	26585 24
1550	11600.00	1075 005504	21720.01	2210 2002	20303.24
1557	11000.00	1005 140420	21500.17	-3310.2093	20094.37
1558	11688.08	1805.149420	215/1.01	-3426.5591	26802.72
1559	11688.08	1734.807508	21641.36	-3534.1378	26910.30
1560	11688.08	1664.959240	21711.21	-3640.9615	27017.13
1561	11688.08	1595.594369	21780.57	-3747.0459	27123.21
1562	11688.08	1526.702993	21849.46	-3852.4062	27228.57
1563	11688 08	1458 275547	21917 89	-3957 0570	27333 22
1564	11600.00	1200 202702	21005 06	4061 0122	27333.22
1504	11000.00	1222 77575	21905.00	-4001.0125	27437.10
1565	11688.08	1322.//5/56	22053.39	-4164.2860	27540.45
1566	11688.08	1255.685809	22120.48	-4266.8912	27643.06
1567	11688.08	1189.024565	22187.14	-4368.8408	27745.01
1568	11688.08	1122.783909	22253.38	-4470.1471	27846.31
1569	11688.08	1056.955978	22319.21	-4570.8223	27946.99
1570	11688.08	991.533153	22384.63	-4670.8778	28047.04
1571	11688 08	926 508046	22449 66	-4770 3252	28146 49
1572	11688 08	261 272400	22445.00	-1860 1752	20140.45
1572	11000.00	707 CODED1		-4009.1732	20243.34
1573	11000.00	/9/.022531	223/8.34	-4967.4386	28343.00
1574	11088.08	/33./48420	22642.42	-5065.1256	28441.29
1575	11688.08	670.244602	22705.92	-5162.2463	28538.41
1576	11688.08	607.104712	22769.06	-5258.8104	28634.97
1577	11688.08	544.322563	22831.84	-5354.8274	28730.99
1578	11688.08	481.892142	22894.27	-5450.3065	28826.47
1579	11688 08	419 807603	22956 36	-5545 2566	28921 42
1580	11688 08	358 063262	22018 10	-5639 6864	20015 85
1 5 0 1	11600.00	206 652504		5722 6044	20100 77
1501	11000.00		23079.31	- 57 55.0044	29109.77
1582	11688.08	235.5/3188	23140.59	-5827.0188	29203.18
1583	11688.08	174.816832	23201.35	-5919.9377	29296.10
1584	11688.08	114.379413	23261.78	-6012.3687	29388.53
1585	11688.08	54.255961	23321.91	-6104.3196	29480.48
1586	11688.08	-5.558368	23381.72	-6195.7977	29571.96
1587	11688 08	-65 068292	23441 23	-6286 8103	29662 97
1588	11688 08	-12/ 278/13	23500 44	-6377 3644	20753 53
1500	11600.00	102 102217			20042 62
1509	11000.00	-103.193217	23339.30	-0407.4000	29645.05
1590	11688.08	-241.81/0/8	23617.98	-6557.1243	29933.29
1291	TT088.08	-300.154265	236/6.32	-6646.3433	30022.51
1592	11688.08	-358.208943	23734.37	-6735.1303	30111.29
1593	11688.08	-415.985177	23792.15	-6823.4914	30199.66
1594	11688.08	-473.486936	23849.65	-6911.4327	30287.60
1595	11688_08	-530.718093	23906 88	-6998 9602	30375 12
1596	11688 08	-587 682435	23963 85	-7086 0797	30462 24
1507	11600.00	-611 202423	24020 55		305402.24
T)21	TT000.00	-044.303030	24020.33	-/1/2./90/	20240.90

1598	11688.08	-700.825375	24076.99	-7259.1169	30635.28
1599	11688.08	-757.011116	24133.18	-7345.0455	30721.21
1600	11688.08	-812.944335	24189.11	-7430.5880	30806.75
1601	11688.08	-868.628404	24244.79	-7515.7495	30891.91
1602	11688.08	-924.066624	24300.23	-7600.5349	30976.70
1603	11688.08	-979.262222	24355.43	-7684.9493	31061.11
1604	11688.08	-1034.218357	24410.38	-7768.9974	31145.16
1605	11688.08	-1088.938119	24465.10	-7852.6841	31228.85
1606	11688.08	-1143.424531	24519.59	-7936.0139	31312.18
1607	11688.08	-1197.680554	24573.84	-8018.9913	31395.16
1608	11688.08	-1251.709086	24627.87	-8101.6208	31477.79
1609	11688.08	-1305.512964	24681.68	-8183.9067	31560.07
1610	11688.08	-1359.094968	24735.26	-8265.8533	31642.02
1611	11688.08	-1412.457820	24788.62	-8347.4648	31723.63
1612	11688.08	-1465.604187	24841.77	-8428.7451	31804.91
1613	11688.08	-1518.536684	24894.70	-8509.6984	31885.86
1614	11688.08	-1571.257871	24947.42	-8590.3285	31966.49
1615	11688.08	-1623.770258	24999.93	-8670.6393	32046.80
1616	11688.08	-1676.076308	25052.24	-8750.6345	32126.80
1617	11688.08	-1728.178434	25104.34	-8830.3178	32206.48
1618	11688.08	-1780.079002	25156.24	-8909.6929	32285.86
1619	11688.08	-1831.780333	25207.94	-8988.7632	32364.93
1620	11688.08	-1883.284706	25259.45	-9067.5324	32443.70
1621	11688.08	-1934.594352	25310.76	-9146.0037	32522.17
1622	11688.08	-1985.711466	25361.88	-9224.1806	32600.34
1623	11688.08	-2036.638197	25412.80	-9302.0663	32678.23
1624	11688.08	-2087.376658	25463.54	-9379.6641	32755.83
1625	11688.08	-2137.928920	25514.09	-9456.9771	32833.14
1626	11688.08	-2188.297020	25564.46	-9534.0084	32910.17
1627	11688.08	-2238.482955	25614.65	-9610.7612	32986.93
1628	11688.08	-2288.488688	25664.65	-9687.2384	33063.40
1629	11688.08	-2338.316146	25714.48	-9763.4429	33139.61
1630	11688.08	-2387.967221	25764.13	-9839.3777	33215.54
1631	11688.08	-2437.443775	25813.61	-9915.0455	33291.21
1632	11688.08	-2486.747635	25862.91	-9990.4493	33366.61
1633	11688.08	-2535.880595	25912.04	-10065.5916	33441.76
1634	11688.08	-2584.844422	25961.01	-10140.4754	33516.64
1635	11688.08	-2633.640850	26009.81	-10215.1031	33591.27

TABLE 2: ARIMA MODEL RESULT

Date	Hour	Q10	Q20	Q30	Q40	Q50	Q60	Q70	Q80	Q90
3/1/2017	1	-2253.281	-1189.59	-422.6	232.77	845.32	1457.88	2113.25	2880.2	3943.9
3/1/2017	2	-2254.354	-1190.3	-423.039	232.56	845.32	1458.09	2113.69	2880.9	3945
3/1/2017	3	-2255.426	-1191	-423.477	232.34	845.32	1458.31	2114.13	2881.7	3946.1
3/1/2017	4	-2256.497	-1191.71	-423.916	232.13	845.32	1458.52	2114.57	2882.4	3947.1
3/1/2017	5	-2257.569	-1192.41	-424.354	231.92	845.32	1458.73	2115	2883.1	3948.2
3/1/2017	6	-2258.64	-1193.11	-424.792	231.71	845.32	1458.94	2115.44	2883.8	3949.3
3/1/2017	7	-2259.71	-1193.82	-425.23	231.5	845.32	1459.15	2115.88	2884.5	3950.4
3/1/2017	8	-2260.781	-1194.52	-425.668	231.29	845.32	1459.36	2116.32	2885.2	3951.4
3/1/2017	9	-2261.85	-1195.22	-426.106	231.07	845.32	1459.58	2116.76	2885.9	3952.5
3/1/2017	10	-2262.92	-1195.92	-426.544	230.86	845.32	1459.79	2117.19	2886.6	3953.6

3/1/2017	11	-2263.989	-1196.63	-426.981	230.65	845.32	1460	2117.63	2887.3	3954.6
3/1/2017	12	-2265.058	-1197.33	-427.419	230.44	845.32	1460.21	2118.07	2888	3955.7
3/1/2017	13	-2266.126	-1198.03	-427.856	230.23	845.32	1460.42	2118.51	2888.7	3956.8
3/1/2017	14	-2267.194	-1198.73	-428.293	230.02	845.32	1460.63	2118.94	2889.4	3957.8
3/1/2017	15	-2268.262	-1199.43	-428.73	229.81	845.32	1460.84	2119.38	2890.1	3958.9
3/1/2017	16	-2269.329	-1200.13	-429.166	229.6	845.32	1461.05	2119.82	2890.8	3960
3/1/2017	17	-2270.396	-1200.83	-429.603	229.38	845.32	1461.26	2120.25	2891.5	3961
3/1/2017	18	-2271.463	-1201.53	-430.039	229.17	845.32	1461.48	2120.69	2892.2	3962.1
3/1/2017	19	-2272.529	-1202.23	-430.476	228.96	845.32	1461.69	2121.13	2892.9	3963.2
3/1/2017	20	-2273.595	-1202.93	-430.912	228.75	845.32	1461.9	2121.56	2893.6	3964.2
3/1/2017	21	-2274.66	-1203.63	-431.348	228.54	845.32	1462.11	2122	2894.3	3965.3
3/1/2017	22	-2275.725	-1204.33	-431.784	228.33	845.32	1462.32	2122.43	2895	3966.4
3/1/2017	23	-2276.79	-1205.03	-432.219	228.12	845.32	1462.53	2122.87	2895.7	3967.4
3/1/2017	24	-2277.855	-1205.73	-432.655	227.91	845.32	1462.74	2123.3	2896.4	3968.5
3/2/2017	1	-2278.919	-1206.43	-433.09	227.7	845.32	1462.95	2123.74	2897.1	3969.6
3/2/2017	2	-2279.982	-1207.13	-433.526	227.49	845.32	1463.16	2124.17	2897.8	3970.6
3/2/2017	3	-2281.046	-1207.83	-433.961	227.28	845.32	1463.37	2124.61	2898.5	3971.7
3/2/2017	4	-2282.108	-1208.52	-434.396	227.07	845.32	1463.58	2125.04	2899.2	3972.8
3/2/2017	5	-2283.171	-1209.22	-434.83	226.86	845.32	1463.79	2125.48	2899.9	3973.8
3/2/2017	6	-2284.233	-1209.92	-435.265	226.65	845.32	1464	2125.91	2900.6	3974.9
3/2/2017	7	-2285.295	-1210.62	-435.7	226.44	845.32	1464.21	2126.35	2901.3	3975.9
3/2/2017	8	-2286.357	-1211.31	-436.134	226.23	845.32	1464.42	2126.78	2902	3977
3/2/2017	9	-2287.418	-1212.01	-436.568	226.02	845.32	1464.63	2127.22	2902.7	3978.1
3/2/2017	10	-2288.479	-1212.71	-437.002	225.81	845.32	1464.84	2127.65	2903.4	3979.1
3/2/2017	11	-2289.539	-1213.4	-437.436	225.6	845.32	1465.05	2128.09	2904.1	3980.2
3/2/2017	12	-2290.599	-1214.1	-437.87	225.39	845.32	1465.26	2128.52	2904.8	3981.2
3/2/2017	13	-2291.659	-1214.8	-438.304	225.18	845.32	1465.47	2128.95	2905.4	3982.3
3/2/2017	14	-2292.718	-1215.49	-438.737	224.97	845.32	1465.68	2129.39	2906.1	3983.4
3/2/2017	15	-2293.777	-1216.19	-439.17	224.76	845.32	1465.89	2129.82	2906.8	3984.4
3/2/2017	16	-2294.836	-1216.88	-439.603	224.55	845.32	1466.1	2130.25	2907.5	3985.5
3/2/2017	17	-2295.894	-1217.58	-440.037	224.34	845.32	1466.31	2130.69	2908.2	3986.5
3/2/2017	18	-2296.952	-1218.27	-440.469	224.13	845.32	1466.51	2131.12	2908.9	3987.6
3/2/2017	19	-2298.009	-1218.97	-440.902	223.93	845.32	1466.72	2131.55	2909.6	3988.7
3/2/2017	20	-2299.067	-1219.66	-441.335	223.72	845.32	1466.93	2131.98	2910.3	3989.7
3/2/2017	21	-2300.123	-1220.36	-441.767	223.51	845.32	1467.14	2132.42	2911	3990.8
3/2/2017	22	-2301.18	-1221.05	-442.2	223.3	845.32	1467.35	2132.85	2911.7	3991.8
3/2/2017	23	-2302.236	-1221.74	-442.632	223.09	845.32	1467.56	2133.28	2912.4	3992.9
3/2/2017	24	-2303.292	-1222.44	-443.064	222.88	845.32	1467.77	2133.71	2913.1	3993.9
3/3/2017	1	-2304.347	-1223.13	-443.496	222.67	845.32	1467.98	2134.14	2913.8	3995
3/3/2017	2	-2305.402	-1223.82	-443.927	222.46	845.32	1468.18	2134.58	2914.5	3996.1
3/3/2017	3	-2306.457	-1224.52	-444.359	222.26	845.32	1468.39	2135.01	2915.2	3997.1
3/3/2017	4	-2307.512	-1225.21	-444.79	222.05	845.32	1468.6	2135.44	2915.9	3998.2
3/3/2017	5	-2308.566	-1225.9	-445.222	221.84	845.32	1468.81	2135.87	2916.5	3999.2
3/3/2017	6	-2309.619	-1226.59	-445.653	221.63	845.32	1469.02	2136.3	2917.2	4000.3
3/3/2017	7	-2310.673	-1227.28	-446.084	221.42	845.32	1469.23	2136.73	2917.9	4001.3
3/3/2017	8	-2311.726	-1227.98	-446.515	221.21	845.32	1469.43	2137.16	2918.6	4002.4
3/3/2017	9	-2312.778	-1228.67	-446.945	221.01	845.32	1469.64	2137.59	2919.3	4003.4
3/3/2017	10	-2313.83	-1229.36	-447.376	220.8	845.32	1469.85	2138.03	2920	4004.5
3/3/2017	11	-2314.882	-1230.05	-447.806	220.59	845.32	1470.06	2138.46	2920.7	4005.5

	3/3/2017	12	-2315.934	-1230.74	-448.237	220.38	845.32	1470.27	2138.89	2921.4	4006.6
	3/3/2017	13	-2316.985	-1231.43	-448.667	220.17	845.32	1470.47	2139.32	2922.1	4007.6
	3/3/2017	14	-2318.036	-1232.12	-449.097	219.97	845.32	1470.68	2139.75	2922.8	4008.7
ſ	3/3/2017	15	-2319.086	-1232.81	-449.527	219.76	845.32	1470.89	2140.18	2923.5	4009.7

TABLE 3 : FINAL DATA FOR APRIL 2017

D5-Apeksha Gupta.xls

March 2017

D6-Apeksha Gupta.xls A

April 2017