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Introduction:  

Generating and managing the electrical power is one of the important aspects of the 

electrical grid. The technical process might be easier to manage if the power load or the power 

demand is known ahead of time. Some information might be available, but they may not be 

enough. For example, the power demand usually does not equal to zero, so the lowest possible 

generated power could be known and it could not equal to zero. However, the highest possible 

demand might not be always available, and the variation might not be known. Preparing for the 

future is also important. If population increases, there is a higher probability that power demand 

will also be increasing. Planning new generation plants is important. To manage existing 

generation, or to plan for new generation plants, the energy demand might be a major 

contributor. Forecasting power is one of the ways that are used to get the power demand in the 

future. 

There are multiple ways to get a rough idea of the energy demand. One way is by looking 

at historical data, and processing that data. The historical data of the New England region, which 

includes Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont, will 

be used to establish a forecasting model. The only historical data that will be used are the 2015 

and the 2016 data. There are three different forecasting methods used to predict the energy 

demand. The first method is the linear interpolation, the second method is the Arima model, and 

the third method is the neural networks. The prediction from each method will be submitted to 

the GEFCom2017 competition.         

 

 

 



The Linear Interpolation Method: 

The first method that was used is the linear interpolation method. As noted before, 

demand forecast for the year of 2017 in the New England region depends on the recorded power 

demand in the years 2015 and 2016. This method assumes that the relationship between the 

power demand in 2015 and the power demand in 2016 is linear. This assumption means that if 

the power demand in 2016 is lower than the power demand in 2015, then the predicted demand 

for the year 2017 will even be lower than the power demand in 2016.  

There are a few ways to establish a linear relationship between the power demand 

provided in the two historical years to forecast the demand in 2017. One of the ways was to 

calculate the growth rate. 𝑇ℎ𝑒 𝑔𝑟𝑜𝑤𝑡ℎ 𝑟𝑎𝑡𝑒 =  
𝑝𝑟𝑒𝑠𝑒𝑛𝑡−𝑝𝑎𝑠𝑡

𝑝𝑎𝑠𝑡
∗ 100. In this case, a forecast for the 

month of March 2017 was needed, March 2015 would be compared with March 2016 and the 

average growth rate would be calculated. The power demand forecast for March 2017 will be the 

based on the demand of March 2016 multiplied by the average growth rate. This approach is one 

way to treat the data linearly. However, this is not the method that was implemented in the 

submission for the GEFCom2017 competition.  

Another way to get a forecast linearly is to break the data into hours. The month of March 

has 31 days which means that the month has 744 hours. The historical data provided a power 

demand for each hour. This model will compare the power demand from one hour in March 

2015 with the power demand associated with the same hour in March 2016. For example, this 

model will compare the power demand from 1st of March 2015 at 1 AM to the power demand 

from 1st of March 2016. A line could be drawn between the two points. The equation of the line 

is the following: 𝑦 = 𝑎𝑥 + 𝑏, where y represents the power demand, x represents the year, a 

represents the slope of the line, and b represents the y axis intercept. Since the x-axis represents 



the year, the line between the two points could be extended to the year of 2017. The y-axis point 

associated with the year 2017 will be the power forecast for the year 2017 at that specific hour. 

Figure 1 is an example of how the model is constructed. The figure compares the power demand 

in March 1st at 1 AM. The equation of the line was between 2015 and 2016 data points was first 

calculated, then using that equation to get the projected 2017 power demand. 

 

Figure 1: Linear Method line example 

The software program R was used to read all the historical data from excel sheets. Then 

the program will divide the data into hours, and the code will compare the power demand 

associated with each year individually to slope (a) and the y-axis intercept (b) from the line 

equation  𝑦 = 𝑎𝑥 + 𝑏. After having the slope and the y-axis intercept, the code will calculate the 

power demand for the 2017. The R code will be repeating the same process with the help of the 

for loop. In each iteration, the code will pick a different hour from the historical data, and a new 

slope (a) and y-axis intercept (b) will be calculated, which means a new power prediction point.   

Figure 2, shows the March 2015 and 2016 power demand along with the 2017 forecast 

for New England region (Total demand). The blue line represents the demand for 2015, the 



orange line represents the demand for 2016, and the grey line represents the projected demand 

for 2017. Figure 2, shows that the linear method is not very accurate and might be a bad 

forecasting method for this application. After examining the historical data, the lowest possible 

power demand is about 9700 MW. It is possible for the forecast to predict power demand that is 

lower than 9700 MW, however predicting half of that suggests that the forecast is not very 

accurate. The lowest predicted power demand was about 5000 MW, which is impossible to have 

when looking at the total demand in the New England region. Another problem with the linear 

method results is trend. Looking at the 2015 and the 2016 data suggests that the power demand is 

declining, which in theory might indicate that the power demand in 2017 might be slightly lower 

than the previous year. However, the forecast does not show any type of trend declining trend, 

which could be an indicating that the forecast is not accurate at all.    

 

Figure 2: Linear Method March Forecast 

 

As noted before, one surprising finding in this method is the very low predicted demand. 

This point appeared on March 13th at 8 AM, which is surprising. The power demand for a day 

usually starts to increase in the morning at around 7 AM, and the power starts to decrease at 

night at around 9 PM. Figure 3, shows the power demand for the March 13th.  The problem here 



was because the method compares a point from 2015 with a point from 2016, and if the 

difference between the two points is large then the difference between 2016 and 2017 will also 

be large. At 8 AM, the difference between 2015 and 2016 was large and the slope was negative, 

so the forecast will have a decreasing power demand in the morning.      

 

Figure 3: Linear Method March 13th 

The ARIMA Method:   

The second method that was used is the ARIMA method. The ARIMA method is one of 

the methods that is used to forecast time series data (Hyndman & Athanasopoulos, 2016). The 

ARIMA model equation is usually represented by the following (p, d, q), where p represents the 

autoregressive order, (d) represents the number of differencing needed to make the data 

stationary, and the (q) represents the moving average order ("Introduction to ARIMA models," 

n.d.).  

 In order to use the ARIMA method, the data should have a few properties. The data used 

in the ARIMA method should be stationery (Hyndman & Athanasopoulos, 2016). Meaning that 

the data should not have a trend, and it should not depend on time. Also, the data should not have 



any type of season in it. The way to make the data stationary is by differencing (Hyndman & 

Athanasopoulos, 2016). The current observation minus the previous observation is one of the 

steps to make the data stationary. The log of the power demand historical data will be taken 

before differencing the data in order to for the data to be stationary on variance (Upadhyay, 

2015). 

In the linear interpolation, the data was divided into hours, and there was a linear model 

for each forecast. In the ARIMA model, looking at individual hours are not enough to construct a 

model for the forecast. The 2015 and 2016 power demand data were divided into days rather 

than hours. A day from 2015 will be combined with the same day from 2016 to get the model 

that projected demand for 2017. For example, the program will take March 1st from the 2015 

data set and combine it with March 1st from the 2016 data set, and the ARIMA model will be 

created using these two days.  

It is hard to determine the required ARIMA(p, d, q) term for each individual model. The 

R software has a package that is called the forecast package. One of the functions that is 

provided in this package is the auto.arima( ) function (Hyndman, O'Hara-Wild, Bergmeir, 

Razbash, & Wang, 2017). The function will examine the data, which is in this case the day from 

2016 followed by the day from 2017, and provide the necessary Arima model terms (p, d, q). 

After getting the model, another function from the same package, which is called forecast( ), will 

be used to get the predication of the power demand for 2017. The R code will be repeating the 

same process for 31 days. There will be 31 different Arima models for each state in the New 

England region. 



 

Figure 4: ARIMA Model March 2017 Forecast 

Figure 4, shows the power demand forecast for March 2017. The grey line which is the 

demand forecast seems to be following a pattern that is very similar to the previous years. The 

prediction in this model does not have any values that are very low or very high unlike the 

linear interpolation model. However, the power demand for some days in the predication is lower 

than usual. One of the reasons behind the low power demand in some days is the usage of the 

auto.arima() function. The predication for each day of the month of March has a unique Arima 

model. That model was constructed by the auto.arima function. If the data are close, meaning 

there is no clear trend in the data, the auto.arima model might assume that the data is stationary, 

and differencing the data is not needed. The auto.arima function might also decide not to include 

a constant to the prediction, which might have some impact on the prediction.   



 

Figure 5: ARIMA Model 1st of March Forecast 

Figure 5, compares the power demand obtained from 2015 and 2016 with the power 

forecast of 2017. The typical power demand for a day has a specific pattern as seen in the 2015 

and 2016 demands. The 2017 forecast does not follow the same pattern. The forecast will start 

low at the morning, then it will start increasing until noon, then the forecast will remain about 

constant for the rest of the day. This is true for every forecast that was produced by the Arima 

model. This issue might be created because the Arima model that was used is the non-seasonal 

Arima model. The seasonal Arima model has more terms that are related to seasonality. We have 

tried to create a seasonal Arima model in the software R, but the software will usually not accept 

the seasonal terms of the Arima model, so the code only uses the non-seasonal Arima model. 

 

 

 

 

 

 



The Neural Networks Method:   

The last method that was used is neural networks. The neural networks consist of 

connected neurons that can process data (Stergiou & Siganos, n.d.). The neural networks are 

useful in many application since it can read data and determine and the patterns and the trend in 

the data (Stergiou & Siganos, n.d.). The neural network usually is constructed by layers ("Basic 

Introduction To Neural Networks," n.d.). The first layer of the neural network is the input layer, 

and the last layer of the neural network is usually the output layer. Between the input layer and 

the output layer, there exist a layer that is called the hidden layer. All the connected neurons are 

placed in the hidden layer. There are connections between the inputs, the neurons, and the 

outputs of the system. Each connection might carry a coefficient or weight, so the input signal of 

the neuron might be multiplied by the weight. The output signal of the neuron depends on the 

neuron function. For example, one type of neurons is called perceptrons. The output of 

perceptrons can only be 1 or 0 (Nielsen, 2017). If the input signal of a neuron multiplied by the 

assigned weight is larger than some defined value, the output of the neuron will be a 1, otherwise 

the output of the neuron will be a 0 (Nielsen, 2017). There are other neuron functions that are 

being used, and they might be producing a different output.      

The previous forecasting methods depends only on the historical power demand data. 

After studying the historical data, temperature has some influence over the power demand. The 

power demand in 2016 decreased on average by 20%, while the temperature in 2016 higher than 

the temperature of 2015 on average by 9%. There is some relationship between temperature and 

power demand. The neural network allows to have multiple inputs to create a single output.  

To forecast the month of April, a model needs to be created. Neural networks are good at 

estimating a function. If the inputs are known, and the output is also known, neural network 



could calculate the required weights and number of neurons needed to get from inputs to output. 

To create the model the output of the network is the 2016 power demand and the following were 

used as inputs:  

• 2015 Date (04/01/2015) 

• 2015 Time of day 

• 2015 Temperature 

• 2015 Power demand 

• 2016 Date (04/01/2016) 

• 2016 Time of day 

• 2016 Temperature  

After the model is created inputs can be changed to obtain the required forecast. In this 

case, any 2015 input will be replaced with 2016 data, and any 2016 input will be replaced with 

2017 data. The following represents the new set of inputs that are going to produce the desired 

forecast:  

• 2016 Date (04/01/2016) 

• 2016 Time of day 

• 2016 Temperature 

• 2016 Power demand 

• 2017 Date (04/01/2016) 

• 2017 Time of day 

• 2017 Temperature (not available, the average of 2015 and 2016 temperatures was used) 

The R software has a package called caret. One of the functions provided in this package 

is the train function. The train function will be used to model the of the neural network. After 

specifying the output and the inputs of the network, the train function will determine the required 

number of neurons, and calculate the weights. After obtaining the model the inputs will be 

changed as specified previously, and the predict function in R will be used to predict the 2017 

forecast.   

Figure 6, shows the results of the of the month of April. The results using the neural 

networks are much better than any method used previously. The power forecast did not include 

any values that are low or high, and power demand for each day seems to be consistent.    



 

Figure 6: Neural Network Method April Forecast 

Figure 7, shows the power demand and the power forecast of April 1st. As can be seen, 

the forecast follows a typical day pattern unlike the forecast produced by the ARIMA method. 

Also, the forecast seems to be lower than both 2015 and 2016 demands. The neural network was 

trained to get 2016 power demand given some 2015 inputs. The 2016 power demand was slightly 

lower than the 2015 demand, so the neural networks might assume that 2017 might also be lower 

than 2016.  

 

Figure 7: Neural Networks April 1st Demand and Forecast 

  



 Conclusion: 

The three methods that are used to forecast energy are the linear, Arima, and the neural 

networks. By looking at the predictions from all of the methods, the most accurate model would 

be the neural networks. The neural networks method gave the flexibility to add external variables 

that could shape the output. The neural net model does not differentiate between weekdays and 

weekend, or between regular days and holidays, but the neural net might allow to add new 

variables and inputs to the model such as weekends. There are other methods, not discussed in 

this report, that could be used for forecasting. One of the methods is the Random forest, which is 

a type of machine learning, like the neural networks. Random forest might produce results that 

are similar to the neural net, but the data will be processed differently. The only struggle that I 

experienced in this project is choosing a forecasting method. The options are wide, and specific 

methods are designed to work with specific applications. The R software made choosing a 

method a little bit easier, since many methods are available as functions, which gave access to 

most method results.   
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Appendix:  

 

The linear method R code: 

library(XLConnect)  # Read and write Excel files  
library(tibble)     # A better way of managing dataframes 
library(dplyr)      # Data manipulation 
library(ggplot2)    # Graphics 
 

wk = loadWorkbook("2015.xls")  
wk2 = loadWorkbook("2016.xls") 
 
ISO_NE_CA_2015 <- select(as_tibble(readWorksheet(wk, sheet="ISONE CA")),  
                         Date, Hour, DEMAND, DryBulb, DewPnt) 
ISO_NE_CA_2016 <- select(as_tibble(readWorksheet(wk2, sheet="ISO NE CA")),  
                         Date, Hr_End, RT_Demand, Dry_Bulb, Dew_Point) 
 
  Demand2015 <- ISO_NE_CA_2015["DEMAND"] 
  Demand2016 <- ISO_NE_CA_2016["RT_Demand"] 
  DryBulb2015 <- ISO_NE_CA_2015["DryBulb"] 
  DryBulb2016 <- ISO_NE_CA_2016["Dry_Bulb"] 
  DewPnt2015 <- ISO_NE_CA_2015["DewPnt"] 
  DewPnt2016 <- ISO_NE_CA_2016["Dew_Point"] 
  size <- dim(Demand2015) 
  ave_Demand <- c() 
  ave_DryBulb <- c() 
  ave_DewPoint <- c() 
  Demand2017 <- c() 
  for (i in 1:size[1]){ 
    ave_Demand[i] <- ((Demand2015[i,1]+Demand2016[i,1])/2) 
    ave_DryBulb[i] <- ((DryBulb2015[i,1]+DryBulb2016[i,1])/2) 
    ave_DewPoint[i] <- ((DewPnt2015[i,1]+DewPnt2016[i,1])/2) 
     
    m <- (Demand2016[i,1]-Demand2015[i,1]) 
    b <- (Demand2016[i,1]-m*2016) 
    Demand2017[i] <- round((m*2017 + b),digits = 2) 
  } 
   
  wk4 <- loadWorkbook("output1.xlsx",create = TRUE) 
  createSheet(wk4, name="Linear") 
  input <-matrix(data =Demand2017,nrow = 8760,ncol = 1,byrow = TRUE) 
  input2 <- data.frame('Hour' = c(1:8760),'Demand2015'=Demand2015) 
  input3 <- data.frame('Demand2016'=Demand2016,'Demand2017'= input)  
  writeWorksheet(wk4,input2,sheet="Linear",startRow = 1,startCol = 1) 
  saveWorkbook(wk4) 
  writeWorksheet(wk4,input3,sheet="Linear",startRow = 1,startCol = 3) 
  saveWorkbook(wk4) 



The Arima Model R code: 
 

Sys.setenv(JAVA_HOME='C:\\Program Files\\Java\\jre1.8.0_121')  
 
 
library(XLConnect)  # Read and write Excel files  
library(tibble)     # A better way of managing dataframes 
library(dplyr)      # Data manipulation 
library(ggplot2)    # Graphics 
 
wk = loadWorkbook("2015.xls")  
wk2 = loadWorkbook("2016.xls") 
 
 
ISO_NE_CA_2015 <- select(as_tibble(readWorksheet(wk, sheet="NEMASSBOST")),  
                         Date, Hour, DEMAND, DryBulb, DewPnt) 
 
ISO_NE_CA_2016 <- select(as_tibble(readWorksheet(wk2, sheet="NEMA")),  
                         Date, Hr_End, RT_Demand, Dry_Bulb, Dew_Point) 
 
  Demand2015 <- ISO_NE_CA_2015["DEMAND"] 
  Demand2015 <- Demand2015[1418:2161,1] 
  Demand2016 <- ISO_NE_CA_2016["RT_Demand"] 
  Demand2016 <- Demand2016[1442:2185,1] 
  DryBulb2015 <- ISO_NE_CA_2015["DryBulb"] 
  DryBulb2015 <- DryBulb2015[1417:2160,1] 
  DryBulb2016 <- ISO_NE_CA_2016["Dry_Bulb"] 
  DryBulb2016 <- DryBulb2016[1417:2160,1] 
  DewPnt2015 <- ISO_NE_CA_2015["DewPnt"] 
  DewPnt2015 <- DewPnt2015[1417:2160,1] 
  DewPnt2016 <- ISO_NE_CA_2016["Dew_Point"] 
  DewPnt2016 <- DewPnt2016[1417:2160,1] 
 
  DayDemand <- c() 
  ForecastDemand <- c() 
  u <-1 
  k <- 1 
  b <- 1 
for (day in 1:31){   
  
    for(oo in 1:48){ 
      if (oo <= 24){ 
      DayDemand[oo] <- Demand2015[oo,1] 
      b <- b+1 
      } 
      if (oo > 24){ 



        DayDemand[oo] <- Demand2016[k,1] 
        k <- k+1 
      } 
    } 
wwww <-ts(DayDemand,start=1,frequency=24) 
 
 
diffr <- diff(log10(as.numeric(wwww))) 
 
 
#par(mfrow = c(1,2)) 
#acf(ts(diffr),main = "ACF Tractor Sales") 
#pacf(ts(diffr),main = "PACF Tractor Sales") 
   
require(forecast) 
 
 
ARIMAfit <- auto.arima((log10(as.numeric(wwww))), approximation = 

FALSE,trace=FALSE) 
 
 
pred <- predict(ARIMAfit,n.ahead = 24) 
   
kkkk <- 10^(pred$pred) 
 
 
for (uu in 1:24){ 
  ForecastDemand[u] <- kkkk[uu] 
  u <- u+1 
} 
 
 
} 
     
wk4 <- loadWorkbook("output5.xlsx",create = TRUE) 
  createSheet(wk4, name="Linear") 
  
  input <- data.frame('Demand2017' = ForecastDemand) 
  writeWorksheet(wk4,input,sheet="Linear",startRow = 1,startCol = 1) 
  saveWorkbook(wk4)   
     
plot(wwww) 
lines(10^(pred$pred)) 
lines(10^(pred$pred+2*pred$se)) 
lines(10^(pred$pred-2*pred$se)) 



The Neural Network R code: 
 
Sys.setenv(JAVA_HOME='C:\\Program Files\\Java\\jre1.8.0_121')  
 
library(XLConnect)  # Read and write Excel files  
library(tibble)     # A better way of managing dataframes 
library(dplyr)      # Data manipulation 
library(ggplot2)    # Graphics 
 
wk = loadWorkbook("2015.xls")  
wk2 = loadWorkbook("2016.xls") 
 
ISO_NE_CA_20151 <- select(as_tibble(readWorksheet(wk, sheet="ISONE CA")),  
                         Date, Hour, DEMAND, DryBulb, DewPnt) 
ISO_NE_CA_20152 <- select(as_tibble(readWorksheet(wk, sheet="ME")),  
                         Date, Hour, DEMAND, DryBulb, DewPnt) 
ISO_NE_CA_20153 <- select(as_tibble(readWorksheet(wk, sheet="NH")),  
                         Date, Hour, DEMAND, DryBulb, DewPnt) 
ISO_NE_CA_20154 <- select(as_tibble(readWorksheet(wk, sheet="VT")),  
                         Date, Hour, DEMAND, DryBulb, DewPnt) 
ISO_NE_CA_20155 <- select(as_tibble(readWorksheet(wk, sheet="CT")),  
                         Date, Hour, DEMAND, DryBulb, DewPnt) 
ISO_NE_CA_20156 <- select(as_tibble(readWorksheet(wk, sheet="RI")),  
                         Date, Hour, DEMAND, DryBulb, DewPnt) 
ISO_NE_CA_20157 <- select(as_tibble(readWorksheet(wk, sheet="SEMASS")),  
                         Date, Hour, DEMAND, DryBulb, DewPnt) 
ISO_NE_CA_20158 <- select(as_tibble(readWorksheet(wk, sheet="WCMASS")),  
                         Date, Hour, DEMAND, DryBulb, DewPnt) 
ISO_NE_CA_20159 <- select(as_tibble(readWorksheet(wk, sheet="NEMASSBOST")),  
                         Date, Hour, DEMAND, DryBulb, DewPnt) 
 
ISO_NE_CA_20161 <- select(as_tibble(readWorksheet(wk2, sheet="ISO NE CA")),  
                         Date, Hr_End, RT_Demand, Dry_Bulb, Dew_Point) 
ISO_NE_CA_20162 <- select(as_tibble(readWorksheet(wk2, sheet="ME")),  
                         Date, Hr_End, RT_Demand, Dry_Bulb, Dew_Point) 
ISO_NE_CA_20163 <- select(as_tibble(readWorksheet(wk2, sheet="NH")),  
                         Date, Hr_End, RT_Demand, Dry_Bulb, Dew_Point) 
ISO_NE_CA_20164 <- select(as_tibble(readWorksheet(wk2, sheet="VT")),  
                         Date, Hr_End, RT_Demand, Dry_Bulb, Dew_Point) 
ISO_NE_CA_20165 <- select(as_tibble(readWorksheet(wk2, sheet="CT")),  
                         Date, Hr_End, RT_Demand, Dry_Bulb, Dew_Point) 
ISO_NE_CA_20166 <- select(as_tibble(readWorksheet(wk2, sheet="RI")),  
                         Date, Hr_End, RT_Demand, Dry_Bulb, Dew_Point) 
ISO_NE_CA_20167 <- select(as_tibble(readWorksheet(wk2, sheet="SEMA")),  



                         Date, Hr_End, RT_Demand, Dry_Bulb, Dew_Point) 
ISO_NE_CA_20168 <- select(as_tibble(readWorksheet(wk2, sheet="WCMA")),  
                         Date, Hr_End, RT_Demand, Dry_Bulb, Dew_Point) 
ISO_NE_CA_20169 <- select(as_tibble(readWorksheet(wk2, sheet="NEMA")),  
                         Date, Hr_End, RT_Demand, Dry_Bulb, Dew_Point) 
 
 
  Demand2015 <- c() 
   
  HOLD <- ISO_NE_CA_20151["DEMAND"] 
  Demand2015 <- HOLD[2162:2881,1] 
  Demand2015 <- data.frame(Demand2015) 
  HOLD <- ISO_NE_CA_20152["DEMAND"] 
  Demand2015[,2] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20153["DEMAND"] 
  Demand2015[,3] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20154["DEMAND"] 
  Demand2015[,4] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20155["DEMAND"] 
  Demand2015[,5] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20156["DEMAND"] 
  Demand2015[,6] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20157["DEMAND"] 
  Demand2015[,7] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20158["DEMAND"] 
  Demand2015[,8] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20159["DEMAND"] 
  Demand2015[,9] <- HOLD[2162:2881,1] 
   
  Demand2016 <- c() 
   
   
  HOLD <- ISO_NE_CA_20161["RT_Demand"] 
  Demand2016 <- HOLD[2162:2881,1] 
  Demand2016 <- data.frame(Demand2016) 
  HOLD <- ISO_NE_CA_20162["RT_Demand"] 
  Demand2016[,2] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20163["RT_Demand"] 
  Demand2016[,3] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20164["RT_Demand"] 
  Demand2016[,4] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20165["RT_Demand"] 
  Demand2016[,5] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20166["RT_Demand"] 



  Demand2016[,6] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20167["RT_Demand"] 
  Demand2016[,7] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20168["RT_Demand"] 
  Demand2016[,8] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20169["RT_Demand"] 
  Demand2016[,9] <- HOLD[2162:2881,1] 
   
   
  DryBulb2015 <- c() 
  HOLD <- ISO_NE_CA_20151["DryBulb"] 
  DryBulb2015 <- HOLD[2162:2881,1] 
  DryBulb2015 <- data.frame(DryBulb2015) 
  HOLD <- ISO_NE_CA_20152["DryBulb"] 
  DryBulb2015[,2] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20153["DryBulb"] 
  DryBulb2015[,3] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20154["DryBulb"] 
  DryBulb2015[,4] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20155["DryBulb"] 
  DryBulb2015[,5] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20156["DryBulb"] 
  DryBulb2015[,6] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20157["DryBulb"] 
  DryBulb2015[,7] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20158["DryBulb"] 
  DryBulb2015[,8] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20159["DryBulb"] 
  DryBulb2015[,9] <- HOLD[2162:2881,1] 
   
   
  DryBulb2016 <- c() 
   
  HOLD <- ISO_NE_CA_20161["Dry_Bulb"] 
  DryBulb2016 <- HOLD[2162:2881,1] 
  DryBulb2016 <- data.frame(DryBulb2016) 
  HOLD <- ISO_NE_CA_20162["Dry_Bulb"] 
  DryBulb2016[,2] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20163["Dry_Bulb"] 
  DryBulb2016[,3] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20164["Dry_Bulb"] 
  DryBulb2016[,4] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20165["Dry_Bulb"] 
  DryBulb2016[,5] <- HOLD[2162:2881,1] 



  HOLD <- ISO_NE_CA_20166["Dry_Bulb"] 
  DryBulb2016[,6] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20167["Dry_Bulb"] 
  DryBulb2016[,7] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20168["Dry_Bulb"] 
  DryBulb2016[,8] <- HOLD[2162:2881,1] 
  HOLD <- ISO_NE_CA_20169["Dry_Bulb"] 
  DryBulb2016[,9] <- HOLD[2162:2881,1] 
 
 
  temp17 <- DryBulb2015 
   
  for (zz in 1:9){ 
    for (z in 1:720){ 
      temp17[z,zz] <- (DryBulb2015[z,zz]+DryBulb2016[z,zz])/2 
    } 
  } 
   
 
library(caret) 
Date15 <- c() 
Date16 <- c() 
Date17 <- c() 
hour15 <- c() 
hour16 <- c() 
hour17 <- c() 
t <- 0 
u <- 1 
for (dayall in 1:30){ 
  for (hourall in 1:24){ 
    Date15[u] <- 03012015 +t 
    Date16[u] <- 03012016 +t 
    Date17[u] <- 03012017 +t 
    hour15[u] <- hourall 
    hour16[u] <- hourall 
    hour17[u] <- hourall 
    u <- u+1 
  } 
  t <- t +10000 
} 
eee_ <- Demand2015 
 
 
for (w in 1:10) { 



em <- 
data.frame(Date15,hour15,DryBulb2015[,w],Demand2015[,w],Date16,hour16,DryBulb2016[,w]
,Demand2016[,w]) 
maxs <- apply(em, 2, max)  
mins <- apply(em, 2, min) 
colnames(em) <- 
c("Date1","Hour1","temp1","Demand1","Date2","Hour2","temp2","Demand2") 
 
scaled_in <- as.data.frame(scale(em, center = mins, scale = maxs - mins)) 
 
colnames(scaled_in) <- 
c("Date1","Hour1","temp1","Demand1","Date2","Hour2","temp2","Demand2") 
library(nnet) 
 
fit3 <- 
train(Demand2~Date1+Hour1+temp1+Demand1+Date2+Hour2+temp2,data=scaled_in,linout = 
TRUE, method = 'nnet') 
 
yyyy <- 
data.frame(Date16,hour16,DryBulb2016[,w],Demand2016[,w],Date17,hour17,temp17[,w]) 
colnames(yyyy) <-  c("Date1","Hour1","temp1","Demand1","Date2","Hour2","temp2") 
 
maxs <- apply(yyyy, 2, max)  
mins <- apply(yyyy, 2, min) 
 
scaled_out <- as.data.frame(scale(yyyy, center = mins, scale = maxs - mins)) 
colnames(scaled_out) <-  c("Date1","Hour1","temp1","Demand1","Date2","Hour2","temp2") 
 
 
eee <- predict(fit3,scaled_out) 
eee_[,w] <- eee*(max(yyyy$Demand1)-min(yyyy$Demand1))+min(yyyy$Demand1) 
 
} 
A <- c() 
ave <- c() 
stan <- c() 
ten <- eee_ 
wk4 <- loadWorkbook("copy1.xls") 
for (c in 1:10){ 
  if (c < 10){ 
  for (o in 1:720) { 
    A[1] <-  Demand2015[o,c] 
    A[2] <-  Demand2016[o,c] 
    A[3] <-  eee_[o,c] 



   
    ave[o] <- eee_[o,c] 
    stan[o] <- sd(A) 
    ten[o,1] <- ave[o]+(stan[o]*-1.2816)/(sqrt(3)) 
    ten[o,2] <- ave[o]+(stan[o]*-0.8416)/(sqrt(3)) 
    ten[o,3] <- ave[o]+(stan[o]*-0.5244)/(sqrt(3)) 
    ten[o,4] <- ave[o]+(stan[o]*-0.2533)/(sqrt(3)) 
    ten[o,5] <- eee_[o,c] 
    ten[o,6] <- ave[o]+(stan[o]*0.2533)/(sqrt(3)) 
    ten[o,7] <- ave[o]+(stan[o]*0.5244)/(sqrt(3)) 
    ten[o,8] <- ave[o]+(stan[o]*0.8416)/(sqrt(3)) 
    ten[o,9] <- ave[o]+(stan[o]*1.2816)/(sqrt(3)) 
   
  } 
  } 
colnames(ten) <-  c("Q10","Q20","Q30","Q40","Q50","Q60","Q70","Q80","Q90") 
 
 
  if (c == 1){ 
      writeWorksheet(wk4,ten,sheet="TOTAL",startRow = 1,startCol = 3) 
      saveWorkbook(wk4)   
  } 
   
  if (c == 2){ 
      writeWorksheet(wk4,ten,sheet="ME",startRow = 1,startCol = 3) 
      saveWorkbook(wk4)   
} 
  if (c == 3){ 
      writeWorksheet(wk4,ten,sheet="NH",startRow = 1,startCol = 3) 
      saveWorkbook(wk4)   
} 
  if (c == 4){ 
      writeWorksheet(wk4,ten,sheet="VT",startRow = 1,startCol = 3) 
      saveWorkbook(wk4)   
} 
  if (c == 5){ 
      writeWorksheet(wk4,ten,sheet="CT",startRow = 1,startCol = 3) 
      saveWorkbook(wk4)   
} 
  if (c == 6){ 
      writeWorksheet(wk4,ten,sheet="RI",startRow = 1,startCol = 3) 
      saveWorkbook(wk4)   
} 
  if (c == 7){ 



      writeWorksheet(wk4,ten,sheet="SEMASS",startRow = 1,startCol = 3) 
      saveWorkbook(wk4)   
} 
  if (c == 8){ 
      Wc <- ten 
      writeWorksheet(wk4,ten,sheet="WCMASS",startRow = 1,startCol = 3) 
      saveWorkbook(wk4)   
} 
  if (c == 9){ 
      NEMA <- ten 
      writeWorksheet(wk4,ten,sheet="NEMASSBOST",startRow = 1,startCol = 3) 
      saveWorkbook(wk4)   
  } 
 
 
  if (c == 10){ 
    ten <- Wc + NEMA  
      writeWorksheet(wk4,ten,sheet="MASS",startRow = 1,startCol = 3) 
      saveWorkbook(wk4)   
  } 
 
 
} 
 
 
 
 
 


