

ETM 530/630 DECISION MAKING SPRING 2017

CASE TITLE : Designing a Decision Model for Car Engine Selection in Oregon

GROUP #/NAME: TEAM C

GROUP MEMBERS: AMIT, ANCHAL, BOBBY, LIPISHREE & RAMI

DATE: 06/06/2017

INTRODUCTION

Shutterstock.com

(A role play lesson for teaching about electricity)

(Direction Plus)

PROBLEM STATEMENT

To select the best engine based on the requirements.

The Car

- Sedan
- \$60K
- Driven in Oregon

METHODOLOGY

Model Development Using: Hierarchical Decision Model (HDM)

In this HDM model of choosing a car engine there are three phases :

- Criteria selection: To select and state different criteria for choosing a car engine
- Hierarchical modeling:
 - to evaluate the impacts of criteria on the objective,
 - determination of relative priority of criteria
 - relative importance of priorities under each criterion
- Criteria evaluation: to evaluate the impacts of priorities on the objective by using the pairwise comparison.

DATA USED

- An Expert Panel with nine experts from the IT sector who would like to buy a car in two months.
- The criteria have been selected with expert opinion.
- The HDM model was sent to the experts and they did pairwise comparison on the criteria.

CRITERIA SELECTION

1. PERFORMANCE:

a) Power and b)Mileage

ENGINE TYPE	POWER \$ per Horse (300 hp)	MILEAGE
ELECTRIC	\$200 (Tesla for \$60K)	120 miles 250 miles for tesla
GASOLINE	\$200 (luxury car for \$60K) \$100 (sports car for 60K)	300 miles General targeted mileage
DIESEL	\$200 (Mercedes 350 CGI)	375 miles Petrol * 125%
HYBRID	\$200 (Mercedes E400)	391 miles Petrol * 130%

2.CONVENIENCE

Public Regeneration Infrastructure for automobile energy consumables

- Level 3 charging station are ubiquitous
- 0.25 1 hour charging time

Convenience: Electric Regeneration Options

Charging Electric Vehicles at home results in negligible need to wait for regeneration when compared to fuels.

Level		Power (kW)	Charging Time
	1	1	12 hours
	2	3 to 20	3 to 8 hours
	<mark>3</mark>	<mark>50</mark>	<mark>1 hour</mark>

Level 3

3.IMPACT ON ENVIRONMENT

1.Electric cars:

- An electric car like Tesla does not need gas, but still gets its energy from burning carbon.
- The electric car has almost four times lower CO2 per mile than an equivalent gaspowered cars.1.Gasoline cars

2. Gasoline cars:

- The smog and carbon monoxide emitted by vehicles and the auto emission are of immediate health concern.
- The emission of Gasoline cars is hugely responsible for global warming

3. Diesel cars:

- Diesel engines can emit a fair amount of Nitrogen compounds.
- They emit high level of particulate matter which is airborne particles of soot and metal.
- 4. Hybrid cars:
 - Hybrid electric vehicle are praised as being fuel efficient and good for the environment.
 - The environment impact of hybrid vehicles is hard to quantify since it is kind of new to the automobile market.
 - Hybrid cars produce fewer gas emission than conventional cars.

2.FINANCIAL ASPECTS:

a)Maintenance

Gasoline Car:

- Gasoline-powered vehicles have many moving parts that require lubrication, things from changing oil and oil filters to replacing timing belts. Repairs are frequent, and often costly
- Scheduled maintenance required every 15,000, 30,000 and 60,000 miles

2. Electric Car:

- Apart from battery replacement, no regular maintenance will be required
- Electric cars have not captured a large share of the market, no strong infrastructure exists to handle maintenance and repair.

3. Hybrid Car:

- Lower maintenance and repair cost and higher resale value when compared to conventional cars.
- The air filter on its electric battery should be replaced every 40,000 to 50,000 miles.
- If the battery dies after the warranty period of 8 to 10 years, then the new batteries could cost as much as \$2000.
- 4. Diesel Car
 - Lower maintenance costs

FINANCIAL ASPECTS:

b)Taxes

• Electric Car:

If we add the \$7,500 Federal tax credit with the Oregon state \$750 tax credit, this will decrease the initial capital investment. Likewise, the 10 year EUAC will decrease greatly so that the breakeven point would improve from \$6 to \$4.

• Diesel & Petrol Car:

For purchasing a diesel car the customer will get a federal tax credit of \$130

• Hybrid Car:

Comparing to the EV's battery replacement cost (\$10,000 ~ \$15,000), hybrid car's replacement cost (\$3000 ~ \$4000) is much cheaper. Hybrid vehicle would be more economical if \$3,400 federal tax credit or \$750 state credit was available

c)Insurance

ENGINE TYPE	6 Months	Monthly
ELECTRIC	\$1,475	\$245.83
PETROL	\$1,118	\$186.33
DIESEL	\$1,219	\$203.16
HYBRID	\$1,168	\$194.66

("esurance")

Best Power Plant (Engine)

HIERARCHICAL DECISION MODEL

				1						
Level 1	Expert 1	Expert 2	Expert 3	Expert 4	Expert 5	Expert 6	Expert 7	Expert 8	Expert 9	Mean
Performance	0.25	0.26	0.44	0.14	0.24	0.28	0.17	0.17	0.32	0.252222222
Convenience	0.18	0.15	0.29	0.21	0.36	0.29	0.18	0.22	0.22	0.233333333
Impact on environment	0.4	0.09	0.09	0.39	0.17	0.27	0.27	0.28	0.28	0.248888889
Financial Aspects	0.17	0.49	0.18	0.26	0.23	0.17	0.38	0.34	0.18	0.2666666667
Inconsistency	0.02	0.1	0.04	0.01	0	0.04	0.02	0.01	0.01	

• Important Criteria: Financial Aspects with a mean of 0.266

Evaluation of each Sub criteria

	Expert 1	Expert 2	Expert 3	Expert 4	Expert 5	Expert 6	Expert 7	Expert 8	Expert 9	Mean
Power	0.35	0.21	0.89	0.59	0.62	0.39	0.35	0.7	0.6	0.522222222
Mileage	0.65	0.79	0.11	0.41	0.38	0.61	0.65	0.3	0.4	0.47777778
Regeneration Time	0.37	0.33	0.22	0.56	0.42	0.4	0.33	0.63	0.58	0.426666667
Regeneration Infrastructure	0.63	0.67	0.78	0.44	0.58	0.6	0.67	0.37	0.42	0.573333333
Resources	0.62	0.66	0.82	0.58	0.54	0.34	0.32	0.35	0.6	0.536666667
emission	0.38	0.34	0.18	0.42	0.46	0.66	0.68	0.65	0.4	0.463333333
Insurance	0.22	0.18	0.15	0.37	0.34	0.22	0.22	0.3	0.44	0.271111111
Taxes	0.3	0.54	0.04	0.23	0.25	0.43	0.53	0.5	0.25	0.341111111
Maintenance	0.48	0.28	0.81	0.39	0.41	0.34	0.25	0.2	0.32	0.386666667

Important Sub-Criteria: Regeneration Infrastructure with a mean of 0.573

Evaluation of Sub-Criteria w.r.t Alternatives

Emission	Expert 1	Expert 2	Expert 3	Expert 4	Expert 5	Expert 6	Expert 7	Expert 8	Expert 9	Mean
Petrol	0.17	0.21	0.01	0.27	0.15	0.17	0.18	0.21	0.18	0.172222222
Diesel	0.18	0.14	0.01	0.18	0.21	0.15	0.15	0.14	0.16	0.1466666667
Hybrid	0.24	0.19	0.02	0.15	0.22	0.23	0.27	0.28	0.26	0.206666667
Electric	0.41	0.45	0.97	0.4	0.43	0.46	0.41	0.37	0.4	0.477777778
Inconsistency	0.02	0.02	0	0.02	0	0.01	0.01	0.02	0.01	

Electric Engine with a mean of 0.477

Best Power Plant (Engine)

Final Results

Best Engine for Sedan	Petrol	Diesel	Hybrid	Electric	Inconsisten
Boot Englite for Could		Brocor	- I J BIIG	LIOOLIIO	су
Expert 1	0.19	0.19	0.24	0.38	0.01
Expert 2	0.27	0.17	0.25	0.3	0.04
Expert 3	0.2	0.2	0.19	0.41	0.03
Expert 4	0.17	0.17	0.22	0.44	0.02
Expert 5	0.21	0.17	0.24	0.38	0.01
Expert 6	0.22	0.2	0.24	0.35	0.01
Expert 7	0.25	0.2	0.23	0.32	0.01
Expert 8	0.22	0.19	0.16	0.43	0.01
Expert 9	0.12	0.16	0.21	0.52	0.01
Mean	0.21	0.18	0.22	0.39	
Minimum	0.12	0.16	0.16	0.3	
Maximum	0.27	0.2	0.25	0.52	
Std. Deviation	0.04	0.01	0.03	0.06	
Disagreement					0.036

The statistical F-Test for evaluating the null hypothesis

Source of Variation	Sum of Square	Deg. of freedom	Mean Square	F-test value
Between Subjects:	0.25	3	0.083	33
Between Conditions:	0	8	0	
Residual:	0.06	24	0.003	
Total:	0.31	35		
Critical F-value with degr	4.72			
Critical F-value with degr	3.72			
Critical F-value with degr	3.01			
Critical F-value with degr	2.33			

FUTURE RESEARCH

- Our study focuses on
 - Car Engine type
 - Assumptions Made: State, Car Cost and Model type

Criteria Selected: Performance, Financial Aspect, Convenience and Impact on Environment

- To expand the model for a more geographical diverse audience
 - Discuss criteria like terrain and weather
- > Personal preferences on exterior and interior features

REFERENCES

Boyd, Jennifer. "A Taxonomy of Explosions." A Taxonomy of Explosions. N.p., n.d. Web. 03 June 2017.

Diesel Parts Specialist - Direction Plus | Home. (n.d.). Retrieved from <u>http://direction-plus.com/</u>

"Esurance". Esurance.com. N.p., 2017. Web. 5 June 2017.

A role-play lesson for teaching about electricity. (2015, October 12). Retrieved June 03, 2017, from <u>https://www.tes.com/news/blog/a-role-play-lesson-teaching-about-electricity</u> Heavy traffic passing by fast on the highway. Day... (n.d.). Retrieved June 03, 2017, from <u>https://www.shutterstock.com/video/clip-3026290-stock-footage-heavy-traffic-passing-by-fast-on-the-highway-day-time-hi-angle-wide-shot-time-lapse.html</u>

n.d.Electric Car Charging Guide. How to Charge My Electric Car at Public Stations? | ChargeHub. Retrieved from <u>https://chargehub.com/en/electric-car-charging-guide.html</u> (2015, July 13). 6 Tips for Installing a Home Electric Car Charger. 6 Tips for Installing a Home Electric Car Charger - Pro.com Blog. Retrieved from <u>https://pro.com/blog/installinghome-electric-car-charger/</u>

n.d.Electric Vehicle Charging Stations. San Francisco Public Utilities Commission : Electric Vehicle Charging Stations. Retrieved June 3, 2017, from

http://www.sfwater.org/index.aspx?page=516

United States. Department of Energy. (2017). Fuel Economy Guide (Online).