ETM ENGINEERING & TECHNOLOGY MANAGEMENT

ETM 530/630 DECISION MAKING SPRING 2017 Group Project

Selecting the Seismic Investment Option for Multhomah County Bridges on the central Willamette for the next 20 years

TEAM A: Gandhali Deshchougule, Hakan Kutgun, Jacob Yang, Maud Guegan, Surekha Chanamolu

CONTENTS

- BACKGROUND
- SCOPE
- KEY DECISION
- METHODOLOGY
- LITERATURE REVIEW
- SOURCES OF DATA
- EXPERT PANEL
- HDM
- RESULTS
- ANALYSIS
- FUTURE RESEARCH

Background

- Portland A City of Bridges
- Bridges are maintained by:
 - The Oregon Department of Transportation (ODOT)
 - Multnomah County
 - Union Pacific Railroad

Background cont.

- 37% Possibility of the earthquake in the next 50 years [13]
- Major fatalities and injuries
- Major economical loss

Bridges are vulnerable to major e Actions are required

Scope of the project

Bridges maintained by Multnomah county in central PDX:

- Burnside
- Broadway
- Hawthorne
- Morrison

Burnside Bridge - Background [1]

- Burnside Bridge, over 90 years of Service
- 40,000 vehicles, 2,000 bicycles and pedestrians daily
- 5 vehicle lanes, 2 bike lanes
- Three bus lines
- 300 openings a year
- Crosses Blue/Red Max Lines, 78k
 weekday riders
- Crosses Union Pacific Railroad mainline
- Burnside Street: Regional Lifeline Route

Hawthorne, Morrison, Broadway Bridge's -Background [2] [3] [4]

- Hawthorne Bridge
 - Over 107 years of Service
 - 4 Lanes, 30,000 vehicles, 800 Trimet buses plus 8,000 bicycles and pedestrians daily
- Morrison Bridge
 - Over 59 years of Service
 - 6 Lanes, 50,000 vehicles daily
- Broadway Bridge
 - Over 104 years of Service
 - 4 vehicle lanes, 1 Streetcar lane
 - 50,000 vehicles daily

KEY DECISION

Selecting the <u>Seismic Investment</u> <u>Option</u> for central PDX Multnomah County bridges on the Willamette for the next 20 years

What are the options??

Key Decision Options

8

10

Multnomah County Project Prioritization:

LITERATURE REVIEW

- Articles Oregon cascadia subduction zone and its impact on Portland
- Characteristics of Multnomah county bridges PBOT, ODOT and Multnomah County-Transportation, Bridge Departments
- Scholarly articles regarding Bridges, Earthquakes
- Scholarly articles regarding decision making methodologies (mainly HDM and EMV)
- Cost analysis Capital Improvement Plan (CIP) reports of Multnomah County

PBOT, ODOT and Multnomah county Transportation and Bridge Department Reports

SOURCES OF DATA

Literature

Group Expert #1 Multnomah county transportation experts Group Expert #2 professionals: architect and engineer.

Group Expert #3 Public

15

ELABORATION Criteria and subcriteria and alternatives WEIGHTAGES Criteria and subcriteria and alternatives

FINAL HDM RESULTS

Sources of Data for HDM

EXPERT PANEL (HDM)

EXPERTS	DESIGNATION	
EXPERT 1	PUBLIC	
EXPERT 2	ENGINEER	Different Backgrounds
EXPERT 3	PUBLIC	
EXPERT 4	ARCHITECT	
EXPERT 5	PUBLIC	Different Perspectives
EXPERT 6	MULTCO ENGINEER	
EXPERT 7	PUBLIC	
EXPERT 8	PUBLIC	

HDM

18

HDM Level Details

Perspective	Criteria	Explanation	
Logiclativo	Regional alignment	How well the projects align with adjacent Partner Agency C projects and regional plans, including emergency preparedn plans	
Legislative	Sustainability	Long-term economic and environmental well-being of the community including preservation of the historic and iconic nature bridges.	
Social	Livable community	How the improvement promotes a multi-modal community including the use of bicycles, transit, pedestrians (ADA compatibility) to encourage a more livable and healthy community.	
	Social justice	How the projects serve traditionally underserved (minority, le income, limited English proficiency, youth, elderly, disabled communities.	

HDM Level Details

Perspective	Criteria	Explanation		
Safety	Emergency preparedness	The bridges' ability to resist seismic, flood and other emergency events.		
	User safety	Multi-modal (including river traffic) safety on the facilities and approaches during normal use.		
	Preserving structural integrity	The structural condition of the bridges (using national bridge rating standards), including paint system ability to preserve the structural condition of the bridges.		

HDM Summary Results

22

Results for Performance Attribute

Safety first!

Results for Performance Attribute

1. Emergency preparedness

1. User Safety

1. Sustaining movable operations

24

Comparison with Multnomah County

- User safety and sustaining movable operations are in top 3 priority in both cases.
- Difference in emergency preparedness vs. sustainability and preserving structural integrity.

Results for Performance Attribute

Results for Performance Attribute

Source of Variation	Sum of Square	Deg. of freedom	Mean Square	F-test value
Between Subjects:	0.39	4	0.096	15.36
Between Conditions:	0	7	0	
Residual:	0.18	28	0.006	
Total:	0.56	39		
Critical F-value with d	vel:	4.07		
Critical F-value with d	evel:	3.29		
Critical F-value with d	vel:	2.71		
Critical F-value with d	el:	2.16		

Results are way over 99% confidence level

EMV Sample

	Earthquake Occurrence Probability	Cost of Inaction (millions)	Catastrophic Failure Probability - 3 brdgs	Catastrophic Failure Probability - Burnside	Cost of implementing the project (millions)	EMV (millions)	Performance Attribute (HDM Result)	DECISION POINTS
Option 1	37%	\$2,015	100%	100%	\$650	\$1,396	0.104	0.15
Option 2	37%	\$2,015	100%	30%	\$1,000	\$1,612	0.128	0.16
Option 3	37%	\$2,015	90%	30%	\$1,300	\$1,857	0.183	0.20
Option 4	37%	\$2,015	60%	30%	\$1,900	\$2,290	0.204	0.18
Option 5	37%	\$2,015	30%	30%	\$2,500	\$2,724	0.383	0.28

Cost Consequence of Inaction

EMV

xPerformance
Attribute=Decision
Points

Option 5 is the best choice but it is the most expensive.

Setting Option 5 aside due to cost, Option 3 is the best decision!

Team 8:

Multnomah County:

Calculation is dependent on earthquake probability. Decision ranking changes with seismic hazard (estimated at 37%).

Setting Option 5 aside (too expensive) Option 3 is top choice for 10%-70% seismic hazard.

FUTURE RESEARCH

- Standardization
- Decision making for next steps
- Cost of inaction would probably be greater than just rebuilding the bridges. Other losses could be added like business loss, river cleaning etc.
- More experts can be added from transportation, legal, sustainability backgrounds.

REFERENCES

[1] "Burnside bridge characteristics", https://multco.us/bridges/burnside-bridge

[2] "Hawthorne bridge characteristics", https://multco.us/bridges/hawthorne-bridge

[3] "Broadway bridge characteristics", https://multco.us/bridges/broadway-bridge

[4] "Morrison bridge characteristics", https://multco.us/bridges/morrison-bridge

[5] "Historical significance",

https://www.oregon.gov/oprd/HCD/SHPO/docs/Environmental%20Compliance/MitigationPage/WillametteBridges_MPD.pdf

[6] "Multnomah County's 20-year bridge plan emphasizes earthquake endurance",

http://www.oregonlive.com/portland/index.ssf/2015/02/multnomah_countys_20-year_brid.html

[7] "Portland bridges likely to fail in major earthquake", http://djcoregon.com/news/2011/09/21/portland-bridges-likely-to-fail-in-majorearthquake

[8] "THE REALLY BIG ONE: An earthquake will destroy a sizable portion of the coastal Northwest. The question is when.", http://www.newyorker.com/magazine/2015/07/20/the-really-big-one

[9] "Seismic Vulnerabilities of Multnomah County's Willamette River Bridges",

https://www.portlandoregon.gov/pbem/article/575931

REFERENCES

[10] "Multnomah County's 20-year bridge plan emphasizes earthquake endurance",

http://www.oregonlive.com/portland/index.ssf/2015/02/multnomah_countys_20-year_brid.html

[11] "20-year Technical Deficiencies Assessment for Multnomah County's Iconic Movable Bridges: ODOT Bridge Design Conference", May 11, 2015, Multnomah County

[12] "Multnomah County Willamette River Bridges Capital Improvement Plan: Final Project Prioritization Report", May 21, 2015, Multnomah County

[13] "Multnomah County Willamette River Bridges Capital Improvement Plan (2015-2034)"

[14] "Crossing the divide: City of Portland Bridge Inventory", 2015, PBOT

[15] Stéphane Mazzotti and John Adams, "Variability of Near-Term Probability for the Next Great Earthquake on the Cascadia Subduction Zone", Bulletin of the Seismological Society of America October 2004 vol. 94 no. 5 1954-1959

[16] Ram Kulkarni, Ivan Wong, Judith Zachariasen, Chris Goldfinger, and Martin Lawrence, "Statistical Analyses of Great Earthquake
 Recurrence along the Cascadia Subduction Zone", Bulletin of the Seismological Society of America December 2013 vol. 103 no. 6 3205-3221
 [17] J. R. Meredith and S. J. Mantel, "Project Management: A Managerial Approach", 9th ed. Hoboken, NJ: Wiley, 2012

[18] T. U. Daim and D. F. Kocaoglu, Eds., "Hierarchical decision modeling: essays in Honor of Dundar F. Kocaoglu", Cham: Springer, 2016

Let's Discuss...

Anything missing???

• //Mention why cost was not considered before in HDM as a criteria

NOT COMPARABLE

GO/NO GO

HDM Design

