

 ETM OFFICE USE ONLY

Report No.:

Type: Student Project

Note:

Shiny

Course Title: Operations Research

Course Number: ETM540/640

Instructor: Dr.Anderson

Term: Winter

Year: 2013

Author(s): Dale Frakes

ETM540 Class Project

Winter 2013

Dale Frakes

21 March 2013

1 Introduction

The goal of this project is to explore the use of Shiny, a web-scripting front-end for R, for
making Operations Research tools, and speci�cally DEA (Data Envelopment Analysis) tools,
available to web users without requiring they install software on their local machines.

R1 is a powerful open-source tool for performing statistical and mathematical analysis.
It's highly extensible and by adding the GLPK package2, it can be used to solve DEA
problems.

Shiny3 is a graphical front-end for R that can be run directly from an R or RStudio4

session, or can be installed as a web-server. The web-server capability is still in beta, but
when installed on a server machine, is able to allow users to interact with speci�c R/Shiny
scripts without having to install R on their local machine.

The ultimate goal of this project is to make various DEA applications available to users
in a way that they can upload their own datasets to the server, then apply DEA to their
datasets without installing any software on their own machines.

2 The Key Questions

Without going very far in describing the work of this project, I'd like to address the main
questions that this project is established to address. They are each listed below as subsections
in this document followed by my answers.

1http://www.r-project.org/
2http://cran.r-project.org/web/packages/Rglpk/index.html
3http://shiny.rstudio.org/
4http://www.rstudio.com/

1

2.1 What do we need to do to get Shiny running? Preferably at
the College of Engineering

"We have an RStudio instance running (rstudio.cecs.pdx.edu) which needs an Intel Lab Ac-
count. Ex. Do we need to have anything else installed on the MCECS RStudio server?"

As outlined further in this document, there are two basic ways to interact with Shiny. One
is to run RStudio (either as a server or running locally) the load the Shiny library and run
Shiny applications. The other is to install Shiny Server on a Linux box and allow users to
interact directly with the Shiny Applications.

I personally would recommend setting up the Shiny Server, even though it's still in beta
according to GitHub.

2.2 How do we run an R-Script that uses the LPSolveAPI package?
(Our DEA and TFDEA relies on this.)

I'm still learning how to use R, but I suspect that anything you currently do in R can be
done with a Shiny application using R. If LPSolveAPI currently works with R, a Shiny app
referring to LPSolveAPI should also work. I still need to verify this.

2.3 How do we "load" new data using an R/Shiny script?

"Perhaps a CSV �le from a local computer. We have a MySQL database at MCECS but it
is only accessible from within the MCECS domain."

The example codes show how to load a csv �le up to the server using Shiny Server. But
it doesn't work with the sample csv �le that the "download example" provided, so there is
some debugging to do.

Once that is solved, there are two main questions that need to be addressed, assuming
this works:

� How do we deal with making sure the data that's uploaded matches what's expected
by the script? I don't know the answer to this yet but will be working on it.

� What happens if two di�erent users load the same �lename? Will one overwrite the
other, or will they each have their own userspace?

2.4 Can you get one of my DEA or TFDEA scripts to run?

I haven't gotten this far in working with R/Shiny. But I'm close to being able to try to make
this happen. The existing script will need to be re-written to use Shiny's reactivity variables.
That is, anything that's a variable needing user input or is an output to be displayed needs
to be re-factored using the reactivity of Shiny. This sounds complicated at �rst but so far it
doesn't really seem to be (at least in very basic examples).

2

From the documentation about Reactivity5, a simple example is shown below:

1 datasetInput <- reactive ({

2 switch(input$dataset ,

3 "rock" = rock ,

4 "pressure" = pressure ,

5 "cars" = cars)

6 })

In the script that de�nes the UI portion of the Shiny application, there is an input
combo-box called dataset that allows the user to select from "rock", "pressure", and "cars".
The above piece of code shows how the user's selection is put into an R variable called
datasetInput. At that point, datasetInput can be used like any other R variable.

Outputting some variables, tables, or charts in Shiny also work through Reactivity and
from the same example, that looks like:

1 output$view <- renderTable ({

2 head(datasetInput (), n = input$obs)

3 })

This is where I need to do more work with programming for Shiny itself. And this is
where I'm a little weak because I'm not yet pro�cient in using R (yet).

2.5 What do we add to the web page to make this work?

If you install Shiny Server, you can simply point a link to it from any other part of the
website. By default, it actually listens to a di�erent port than a normal web server (8100
instead of 80). This can be remedied by installing Shiny Server behind a proxy and allowing
a standard web server like Apache handle the main connection and then redirect it to the
Shiny server and applications.

It should be possible to have a Shiny Apps web page that lists details about the various
applications/scripts you want to make available and then provide a link to that speci�c
application. Such a page could even provide example data templates that can be downloaded
and populated to then be uploaded to the Shiny App.

2.6 Where is the computational load imposed? (in a heavy com-
putational load, are the MIPs consumed on the server or the
browser/client.)

The load will be imposed on the machine actually running the Shiny Server. The extent of
that load could be measured using standard Linux tools like top and htop.

I also suspect that the load could be limited and managed using standard Linux tools
like nice or renice, though there is probably a way to do this in the init code/script that
launches Shiny at boot.

5http://rstudio.github.com/shiny/tutorial/#reactivity

3

Once I get further into this, I would like to do some load-testing to see what the impact of
running computationally-challenging scripts is on the server. However I suspect that there
will not be much di�erence between running a native R script vs. running an equivalent
Shiny script. Shiny may add a bit of overhead, but I suspect it will be negligible.

3 Installing Shiny

There are two main ways to interact with Shiny. The �rst is simply to install the Shiny
package into a session of R and then running a Shiny script. This is probably the best way
to work on the development Shiny applications. This is also su�cient for deploying a Shiny
application to someone who already has access to R or RStudio on their workstation.

This can also work when setting RStudio as a web service. In this mode, the user
connects to the computer with their web-browser and is then able to work with RStudio like
they would if it were running locally. From here, they can easily load and run Shiny scripts.
The downside to this is that they must have an account on that machine.

The second way is to install Shiny-Server on a machine capable of working as a web-server.
The biggest advantage to doing this is that the user does not need to have an account on
the machine.

3.1 Running Shiny From Within RStudio

If you're already running in RStudio, it's pretty easy to get started using Shiny. First you
have to install the Shiny packages in your account or on the machine for everyone. The
following line in R will accomplish this:

1 install.packages('shiny ')

Note, to make this work "for everyone", then you must be running R as root. This will
then install the Shiny package where it will be available to all users on this machine.

Once you have Shiny installed in R, you can see it in action by loading the library and
running one of the example programs that come built-in with Shiny.

1 library(shiny)

2 runExample("01 _hello")

Note that when the runExample code is executed, Shiny will be running (and no other
commands can be run) and it will output "Listening on port 8100" and then attempt to
open a new browser window or table and point it to http://localhost:8100/.

This should work �ne if you're running RStudio as a local application. However, if
you're running this as an RStudio server session, the server won't actually be on localhost.
For example, I currently have an RStudio server running on a Linode virtual computer at
http://192.81.129.82:8787 and when I run those commands, the window opens still pointing
to http://localhost:8100/. To actually access the Shiny application, you need to change that
to http://192.81.129.82:8100/, pointing it to the actual server located at 192.81.129.82.

4

3.2 Running Shiny as a Web Server

After having my Linode machine hacked, I decided to experiment with building and installing
a machine on my local network. With that machine I installed Shiny Server and am able to
interact with it as I would any other web server. It's located at: http://50.53.36.167:3838

When you go to that link, you'll see the "folders" for this server installation. The "ex-
ample" link are the canned examples that come with Shiny - and they work as expected.

The "sandbox" link is a set of shiny scripts that were on the link for installing Shiny
Server - and they have examples of things we want to do (upload �les as examples) however
they don't seem to work properly yet.

4 Notes and Recommendations

Below are my general recommendations and observations while working on this project.

� As far as I can tell, the web-server versions of RStudio and Shiny are only avail-
able on Linux based machines. So to install these tools, a server running Linux will
be necessary. Github has instructions6 for installing Shiny on an Ubuntu Linux ma-
chine. These instructions should work (possibly with some modi�cations) on other
non-Ubuntu based Linux machines.

� Development of Shiny and development using Shiny is currently very active. A great
resource for seeing other people's problems and some solutions is the Google Group
dedicated to Shiny7. It's not unusual to see up to 35 messages each day on this group.

� Shiny Server may not work as well with Firefox as the client. In a few cases, I've
seen some example programs that did not function properly in Firefox, but seemed to
work just �ne with Internet Explorer and Chrome/Chromium. However this may be a
function of the ad and script blocking add-ons I use with Firefox

� Per the RStuio installation page8, it seems best, from a security and reliability point-
of-view, to con�gure RStudio Server and/or Shiny Server behind an industry standard
web server like Apache and set up proxy to direct the connections to the appropriate
server. The details for making this con�guration with Apache can be found here on
the RStudio website9.

5 Further Work and Questions

There is still further work to be done and I hope to continue pursuing these challenges over
the next few weeks. Among them are:

6https://github.com/rstudio/shiny-server/wiki/Ubuntu-step-by-step-install-instructions
7http://groups.google.com/group/shiny-discuss
8http://www.rstudio.com/ide/docs/server/getting_started/
9http://www.rstudio.com/ide/docs/server/running_with_proxy

5

Answer Remaining Key Questions Among the key questions are:

� How to upload data

� Making sure LPSolveAPI works

� Implementing the TFDEA scripts in Shiny

User-Uploaded Data How do you do ensure the structure of the data is proper for doing
DEA analysis? Or how do you identify columns of data for each type of analysis?

Concurrent Users Does each user have their own "workspace"? What happens if two
di�erent users both upload a �le with the same name e.g. two users concurrently
upload a �le named mydata.csv.

Implement Basic DEA Program Dr. Burkett10, an economics professor at the Univer-
sity of Rhode Island (burkett@uri.edu) has a very nice and simple set of DEA examples
implemented in R11, and I have his permission to use his examples as easy test-cases
of DEA programs to implement in Shiny. I'd like to try and implement them as a
trial-run to more di�cult examples.

10http://www.uri.edu/research/isiac/burkett.htm
11http://www.uri.edu/artsci/ecn/burkett/DEAnotes.pdf

6

	ETM_Student_Report_Template
	ETM540_ProjectWriteup_DaleFrakes

