

TRM for Household Refrigerator

Course: ETM 534 Technology Roadmapping

Instructor: Dr. Daim

Term: Summer 2013

Team 2

Jing Jiang Justin Thompson Nameer Al-Mulla Zina Boulos

1.	EXE	CUTIVE SUMMARY	3		
2.	INTI	RODUCTION	3		
3.	LITE	ERATURE REVIEW	4		
4.	ROA	ADMAP DEVELOPMENT	6		
4	.1	Market Drivers	6		
4	.2	Technology Roadmap: Market Drivers	9		
4	.3	Product Features1	3		
4	.4	Technologies1	4		
4	.5	Resources1	15		
5 RECOMMENDATIONS		17			
6	6 CONCLUSION				
7 REFERE		ERENCES	.9		

1. EXECUTIVE SUMMARY

Since the first refrigerator was patented in 1834, the technology, cost, and ease of use has made it an essential part of the home kitchen of today. General Electric (GE), one of the leading producers of refrigerators in the world is being modeled as the manufacturer of choice because they possess the diverse technological know-how to improve this product. GE was chosen as the model manufacturer because they exhibit the forward thinking traits and large business diversification to prepare a technology roadmapping study.

This paper will utilize technology roadmapping to create a plan for how GE could focus their effort and resources in their refrigeration business unit to develop a refrigerator in the future which will harness the market drivers to capture more of the market share.

Technology Roadmapping is collaborative process first developed by the CEO of Motorola and allows to experts and researchers in the field of study to determine the market drivers, technologies, products/components, and resources. These items are put to a time line during the iterative initial steps then are connected through links.

The benefit of using this method in this study is that it allows many different market drivers that consumers have to develop a refrigerator that largely meets those needs. In essence, GE wishes to find out the market pull to develop technologies that push consumers more towards their refrigerators.

This study will show that technology roadmapping can be successfully used to create a plan of action over a time span of only 20 years that will integrate existing refrigerator technology and identify gaps in those technologies. The refrigerator GE ultimately creates for this hypothetical future is not set in stone which comes from the fact that market drivers and other issues may change. Technology roadmaps are not commandments for an organization to follow, but must be adapted as new knowledge becomes available.

2. INTRODUCTION

A kitchen may be not only the best room in the house but also the most wasteful. According to the U.S. Department of Energy, lighting, refrigeration and cooking is estimated to consume 41.5% of a home's energy ^[1]. The refrigerator is the second-largest consumer (13.7%) of a home's energy following the air conditioner (16%) ^[2]. In most households, the refrigerator may be the single biggest energy draining kitchen appliance.

It is estimated electricity generated with coal and natural gas dominates nearly 70% of U.S. electricity market. Released greenhouse gasses into the atmosphere contribute to climate change and pollute environment. If everyone in the US used a refrigerator which had earned the Energy Star, a total 715 million kWh per year would be saved and greenhouse gas emissions equivalent to those from about 100,000 cars would be reduced ^[3].

Recently, we have seen substantial innovation in the refrigerator sector ^[4-6]. Although energy efficiency in refrigerators have been gradually improved, radical innovations by which refrigerators would consume significantly less energy have not been paid much attention ^[9].

GE is a leader of radical energy innovation ^[10]. The purpose of this project is to provide a technology roadmap which guides the company's refrigerator R & D planning and resource allocation.

3. LITERATURE REVIEW

This project develops a technology roadmap from the perspective of GE and foresees the refrigerator evolvement. The technology roadmapping visually represents a powerful technique for supporting technology management and planning, and widely are used for exploring and communicating the dynamic linkages between technological resources, organizational objectives and the changing environment ^[11-12].

By the help of technology roadmapping, companies, industries and R&D organizations can plan what they must do to succeed in future markets. The uses and benefits of technology roadmaps:

- predict, based on well-informed assumptions, the market's future technology and product needs;
- identify the science and technology areas with the highest potential for an industry;
- identify critical enabling technologies that will be needed and the gap (in terms of technology development) between what exists and what is needed;
- support informed, strategic technology investment decisions;
- avoid risky, unproductive technology investments;
- increase collaboration and partnerships among companies through the sharing of knowledge;
- establish the consensus needed to move forward on a program of technology-development R&D;
- establish a framework to coordinate R&D and leverage R&D investments among companies;
- define the steps required to transfer technology to marketable applications ^[13].

R.N. Kostoff and R.R Schaller ^[14] categorize four different application level roadmaps: 1) science & technology maps or roadmaps; 2) industry technology roadmaps; 3) corporate or product-technology roadmaps; 4) product/portfolio management roadmaps. Based upon purpose—at a low level of developmental purpose, Phaal et al. ^[11] propose a summary of different types of roadmaps, which comprise product planning, service/capability planning, strategic planning, long-range planning, knowledge asset planning, program planning, process planning, and integration planning. One of the best visuals of roadmaps variations is purpose-driven roadmaps provided by Phaal et al. ^[11]. Technology planning and technology assessment, impact evaluation of technologies, is also assisted through technology roadmaps ^[15-16]. Technology roadmaps need to be integrated with technology forecasting tools ^[16-19] because they provide insight into the future. New product development decisions ^[20] can benefit by use of roadmaps which help select emerging technologies ^[21-22] and aid in industry-level R&D planning ^[23-24].

B. Wang et al ^[25] use technology assessment, forecasting, and roadmapping for sustainable energy including decision models for emerging economies. Other researchers ^[26-32] also use them to assess technologies and forecast the performance growth or the production of energy alternatives. M Amer et al. ^[33] use roadmaps to enable efficient technology planning. Fig. 1 shows the methodology for developing the technology roadmap.

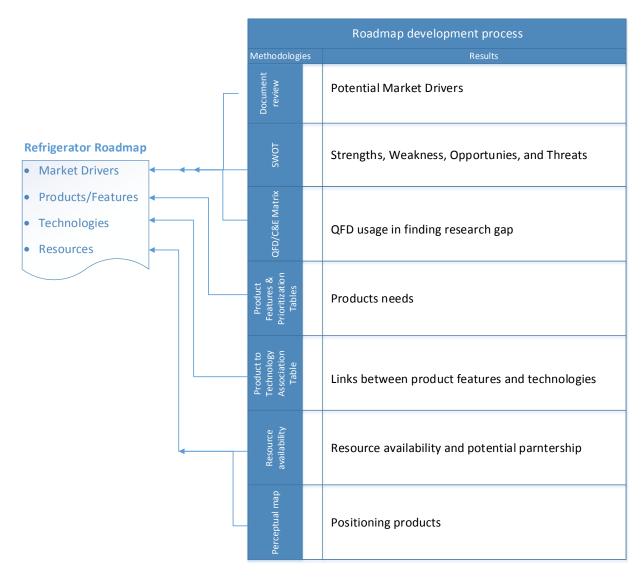


Figure 1 - Roadmap development process

4. ROADMAP DEVELOPMENT

This report demonstrates the development of a technology roadmap for a refrigerator for the leading manufacturer of commercial, industrial, and consumer products in the world, General Electric. The steps for the technology roadmap include:

- Market Drivers technology for the relationships between different aspects of the refrigerator markets. Followed by an analysis of consumer market drivers for the home refrigerator.
- Business Drivers business and operational aspects are explored in a SWOT analysis and related to the consumer refrigerator market.
- Quality Function Development this mathematical evaluation of the relationship of market drivers to product features is created to contain and focus the technology roadmap into a manageable number of features
- Product Features the features that are most important to consumers are factored in a table.
- Technologies technologies that will fulfill the product features are identified.
- Resources research and development, acquisitions, and partnerships are conceptualized for creation and application into the technologies identified. Gaps in GE's portfolio are identified for awareness.

4.1 Market Drivers

In order to develop refrigerator roadmaps, we need to make efforts to know refrigerators and grasp knowledge to build a roadmap. The availability and application of refrigeration technology significantly impact a society's standard of living. Examples of key contributors to quality of life are preservation throughout the food chain and medical applications. Although we cannot find integrated energy consumption information, this largest demand sector for refrigerants is estimated to use about 9% of world power generation capacity ^[34]. This consumption of global power-generation capacity means that the relative energy efficiency of alternatives can have a significant impact on indirect greenhouse-gas (GHG) emissions. Refrigeration applications vary widely in size and temperature level. Sizes range from domestic refrigerators requiring 60–140 W of electrical power and containing 40–180g of refrigerant, to industrial and cold storage refrigeration systems with power requirements up to several megawatts and containing thousands of kilograms of refrigerant. Refrigeration temperature levels range from –70°C to 15°C. Nearly all current applications use compression-compression refrigeration technology. The potential market size for this equipment may approach US\$ 100,000 million annually. This diversity has resulted in unique optimization efforts over the decades, which has resulted in solutions optimized for different applications. The refrigeration market is divided into the five segments ^[34]:

- Residential segment: used for food storage;
- Commercial segment: used by retail outlets for holding and displaying frozen and fresh food for customer purchase;
- Food processing and cold storage segment: used for preserving, processing and storing food from its source to the wholesale distribution point;

- Industrial segment: used for chemical processing, cold storage, food processing and district heating and cooling;
- Transport segment: used for preserving and storing goods, primarily foodstuffs, during transport by road, rail, air and sea.

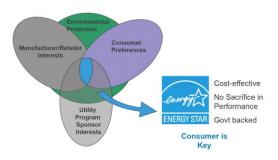


Figure 2 - Energy saving drivers [35]

In the project we only focus on consumer use – kitchen refrigerators. According to a 2001 home energy survey by the Energy Information Agency, a division of the U.S. Department of Energy, the refrigerator consumes 13.7%, followed by central air conditioners 14.1%, with the next highest amount of 42.2% going to the dryer, of the average home's energy usage ^[56]. The energy saving is our best interest, and the Figure 2 shows the drivers.

While energy conservation in the refrigerator is strong market driver it is highly evident that smartphones and tablet computers have gained wide adoption. It makes it possible for people to stay connected at all times. Through various social media networks, people tweet, post and update, and receive almost real-time feedback from friends, family and followers. Social media guides us every step of the way, so our home appliances – kitchen refrigerators is expected to do the same. Household refrigerators not only automatically tell us which recipes we can make from the ingredients they have on hand, but also discover that something has gone bad such as milk, just order more, providing a seamless experience ^[36].

Consumer expectations for the next generation of smart appliances have increased because the cost of the technology to manufacture and power smart appliances has decreased. Appliances, smart or otherwise are expected to provide interconnectedness, intelligence and longevity. These advanced features impact energy consumption which in turn affects consumers' utility bills. "If Americans are given the technological solutions in the form of smarter, more sophisticated and more environmentally friendly products and services, 74% of them are likely to change their energy usage to save money on their utility bills" ^[36]. However, the increased complexity of these products can lead to challenges in getting them to market quickly and may also increase the manufacturing costs. Therefore, the product will be expensive. This may prevent customers from adopting the product. The Figure 3 shows the market growth estimation of smart appliances.

In today's fast-paced market, our product must not only deliver what it promises, but also exceed customer expectations, so it can enable GE to establish and build potential buyers' trust in these new products, win valuable mind share and market share, thereby increasing GE profits.

Initially, we identified twenty market drivers which are categorized into operation, storage, reliability, kitchen, dispense, and cost.

	Market drivers				
Catergory Description					
	Low energy consumption	D1			
E	Quiet	D2			
atio	Mantains temperature	D3			
Operation	Smart Technology	D4			
ō	LCD display	D5			
	Preserves food & freshness	D6			
	Maximize storage space	D7			
e	Flexibility for changing storage needs	D8			
Storage	Easy access & visibility	D9			
sto	Easy to clean	D10			
	Handles large containers & items	D11			
≿	Reliable, durable, and long service life	D12			
- Elia	Easy & low cost to service & maintain	D13			
Reliability					
Å					
5	Easy to deliver & install	D14			
(itchen	Coordinates with kitchen décor	D15			
Kit	Fits in kitchen space	D16			
a	Dispenses purified cold & hot water	D17			
Dispense	Provides & dispenses purified ice	D18			
ispe	Dispenses coffee & tea	D19			
ā					
s	Low price	D20			
Cost					

Government subsidies are expected to drive the rapid development of the smart, energy-efficient home appliance market. Major manufacturers, supported by connectivity technology partners, will be another driving force, as consumers are expected to begin purchasing energy-efficient appliances such as refrigerators, dishwashers, clothes washers, dryers, stoves and ovens.

The market trends – market drivers for home appliances including refrigerators can be summarized in four main areas:

- Functionality how easy the refrigerator operates within the kitchen
- Aesthetics pleasing refrigerator styling an looks
- Technology interconnected to power system, other home appliances, and networked devices such as smart phones or personal computers
- Energy efficiency reduction in energy consumed for the same amount of output

Initially, we identified nineteen market drivers which are categorized into operation, storage, reliability, kitchen, dispense, and cost.

4.2 Technology Roadmap: Market Drivers

The drivers in Table 1 should meet customer demand and refrigerator market trends.

The first step was to perform a SWOT Analysis for GE's consumer refrigerator business unit. SWOT stands for Strengths, Weaknesses, Opportunities and Threats; these are organized into a two by two chart where participants can brainstorm the external and internal factors for each heading ^[37].

Strengths [38, 47-48]:

- Excellent research and development department
- Operating in 160 countries
- Diverse product range

 Excellent research and development	 Weak credit rating Increasing instances of product recalls Short of technology and products for smart
department Operating in 160 countries Diverse product range Fourth most recognized brand in the world Fourth largest refrigerator manufacture Investment and funding from Government in	refrigerators such as LCD display, smart phones,
radical cooling innovation for refrigerator ^[58]	OS, and etc.
 Gaining market share Introducing radical innovation refrigerator Creating partnership with other component companies 	 High competition from Whirlpool, LG, Samsung and other manufacturers Competition from market entry of many competitors and copycat brands

Figure 3 - SWOT analysis

- Fourth most recognized brand in the world
- Fourth largest refrigerator manufacture
- Investment and funding from Government in radical cooling innovation for refrigerator

Weakness ^[47-48]:

- Weak credit rating
- Increasing instances of product recalls
- Short of technology and products for smart refrigerators such as LCD display, smart phones, OS, and etc.

Opportunities ^[47-48]:

- Gaining market share
- Introducing radical innovation refrigerator
- Creating partnership with other component companies

Threats [47-48]:

- High competition from Whirlpool, LG, Samsung and other manufacturers
- Competition from market entry of many competitors and copycat brands

From the SWOT analysis, we found that we should put effort on radical innovation cooling system to gain customer respect and increase our market share. If we can release the product earlier than other competitors, customers will adopt our products and become the number one refrigerator manufacturer. The SWOT also showed GE does not have "smartphone" and "wireless" technology which are required for smart refrigerators. Opportunities to explore and create mutually beneficial partnerships would be the best strategy because of existing communication standards currently in the market.

Quality Function Deployment (QFD):

QFD is a systematic way by which we develop products based on the needs of the market. The ability of QFD is to focus product designers and manufacturers on market needs. Halbieb et al. ^[38] define QFD as structured deployment of key requirements which assures that the product development team maintains its focus on these requirements and realizes customer needs and expectations repeatedly in the manufacture of the product. Hjort et al. ^[39] thinks a strength of QFD as a design for quality technique is its ability to facilitate the organization of unrelated data emanating from stakeholders in the product into insightful relationships which allow designers to focus on critical elements which can be changed to maximize customer satisfaction. Erikksen et al. ^[40] use QFD to maximize quality in development of customized computer software and claim QFD allows them to model the discussion between customers, software designers and other participants. QFD has been used successfully by manufacturers of consumer products to make products and services more competitive and user friendly in a consumer-focused market ^[41-45]. We use QFD quality tool to prioritize market drivers of kitchen refrigerators so we can keep these drivers manageable for the future product development. QFD tools are mathematically simple, however,

this tool is subjective decision based upon the knowledge level of people involving the process so it is lack of scientific basis. Heuristic method for objective decision in the process is needed developing in the future.

A. M. Lamb et al ^[46] suggest that the number of market drivers should be narrowed to no more than five of the top drivers. Group discussion, the expertise of involved people, or quantitative decision-aiding tools can be used for narrowing ^[41].

Product features				
ID	description			
PF1	Smart insulation			
PF2	Balancing load according to the grid			
PF3	Glass fridge door			
PF4	Efficient EC fan			
PF5	Cools the refrigerator after frequent door openings			
PF6	Efficient fan system			
PF7	Reduction compressor power consumption.			
PF8	High efficiency compressors			
PF9	Smart defrost			
PF10	Zero ozone depletion levels			
PF11	Extra door storage			
PF12	Adjustable shelf			
PF13	Troubleshooting feature - early error detection			
PF14	Performance control			
PF15	Connects to service technician to diagnose issues remotely			
PF16	Send information to smart phones			
PF17	Remotely access the fridge to find out contents			
PF18	Peer to peer appliances communication			
PF19	Track inventory			
PF20	Create a shopping list			
PF21	Pre-programmed settings for hot food and drink preparation.			
PF22	Keeps food garden fresh			
PF23	Surface protection			
PF24	Life time motor			
PF25	Hot food and drink preparation			
PF26	Customizable drawer functions			

Table 2: Product features

QFD design for this project starts from determination of *Important Weighting* which is the most important measure. We used it to narrow the number of market drivers. The figure of weight quantifies the relative importance of each of the market drivers from our perspective. A quadratic measure scale weight is used to identify the importance of each market drivers: 9 - high important, 3 - moderate important, 1 - low important, blank – not important. Although other options such as linear scale, constant sum, conjoint analysis, and 10-1 scale can be used for this purpose, the quadratic measure is the best for this project. These weights are pulled out of air by us or determined by literature review or group discussion.

After determination of important weighting, the strength of relationships between drivers and supporting features are determined. Four classifications are used. If they are strongly related, a value of 9 or a red

disk is marked in the respondent cell. Moderate relationships are given a 3 or a green square. Weak relationships are given a 1 or a blue triangle. No relationship is given a 0 or left blank. The logarithmic 9-3-1 scaling method has been adopted by most QFD users. These correlations can be represented with either symbols or numbers. Because of timing and resource limitations, strength of relationships was chosen based upon our literature review and our intuition.

By multiplying each cell's value by the weight of the market driver and totaling the column for each product features, we get scores shown in the row labeled "Score". The overall score for each column shows the importance of that feature in meeting the market drivers. Features with low scores receive little consideration, but this does not necessarily mean that they will not be used in the product design. They may still be necessary for contractual or other reasons. In order to meet market requirement, we must focus on features with the highest scores. This is the main purpose of the QFD analysis.

Table 2 below lists product features which will be associated with market drivers. Those are features from engineering perspectives. Fig 5 demonstrates the QFD analysis results.

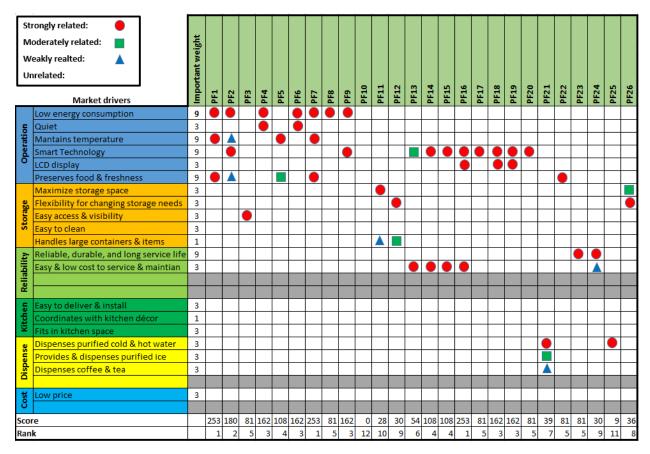


Figure 4 - QFD analysis - Market drivers vs. Product features

In QFD analysis, the findings are facts the QFD provide a large number of priority market drivers and a few items have the same number. This implies high diversities in the refrigerator industry – different approaches can get the same results or drivers and associated features have the same priority. We also have to evaluate the difficulty measure so that these features can be implemented appropriately. Table 3

below shows the features ranking 1 or 2 in the product feature list. They will be highly recommended to support.

Planned product features based upon scores					
ID	Description	Score	Rank		
PF1	Smart insulation	253	1		
PF7	Reduction compressor power consumption.	253	1		
PF16	Send information to smart phones	253	1		
PF2	Balancing load according to the grid	180	2		

4.3 **Product Features**

Based upon market drivers and market trends, low energy consumption and smart technology are the target. Smart and low energy consumption refrigerators are our goal in near and far future. In the near term, we need to release smart refrigerator and improve energy efficiency. In the long run, we need to make radical cooling innovation.

Refrigerator can be divided into a few subsystems based upon the functionalities ^[49] and we create a map between product features and the subsystems. The map is shown in Table 4. The findings are that technology innovation or feature enhancement mostly happen in refrigerator cycle and control/display subsystem.

ID	Subsystems	Description	Features
			PF5, PF7, PF8, PF10,
PS1	Refrigerator cycle	Cools the inside of the refrigerator and freezer compartments	PF22
		The Ice Maker is located in the freezer compartment that	
		automatically fills ice trays, freezes the water, and dispenses	
		the ice into a storage bin. The Ice Dispenser, when activated,	
		dispenses the ice out of the storage bin and through an exit	
PS2	Ice maker/dispenser	hole in the freezer door for use.	PF25
		The Doors act as both an opening for refrigerator use and extra	
		storage. On the inside of the doors and main cabinet, Insulation	
		is used to keep the temperature of the refrigerator from being	
PS3	Doors and insulation	affected by the temperature of the environment.	PF1, PF3, PF11
		The Cabinet is the material that houses the entire refrigerator	
		while the shelves provide more usable storage space inside the	
PS4	Cabinetry and Shelves	refrigerator.	PF12, PF26
		Circulates the air inside the compartments in order to create	
	Air flow	uniform temperature gradient for both the refrigerator and	
PS5		freezer	PF4, PF6, PF24
		Allows the user to define a preferred temperature for both	PF2, PF9, PF13, PF14,
		refrigerator and freezer compartments, comminicate witth	PF15, PF16, PF17,
		other appliances , remote control system, and smart phones,	PF18, PF19, PF20,
PS6	Controls/display	and display information	PF21,

Table 4 - Refrigerator subsystems

Refrigerator cycle is the fundamental system of a refrigerator. R & D efforts ^[50-53] are new radical cooling innovation, making low energy consumption, and reducing or even free greenhouse gas.

Except traditional control functionality, control/display subsystem makes refrigerator smart and intelligent. Smart grid can let the utility provider regulate the refrigerator's power consumption and curtail operations during more expensive peak-demand times.

Based upon GE current residential refrigerator families, the following three features are recommended in midterm:

- Smart insulation (PF1)
- Send information to smart phones (PF16)
- Balancing load according to the grid (PF2)

In fact, PF2 feature depends on PF16. Refrigerators communicate with not only smart phones but also other remote control centers such as utility providers.

In the long run, we need to make radical cooling innovation, so that refrigerators consume very low energy consumption and are greenhouse gas free:

Reduction compressor power consumption (PF7) – radical refrigerator cycle innovation

Providing rich features in products will add manufacturing cost so that the price of products will go higher. We are expecting customers would like to adopt our new products, and get out "CHASM" gap quickly.

4.4 Technologies

After we narrow down product features, we focus on developing technologies supporting these features.

For PF1, Vacuum-insulated panel (VIP) technology is widely developed. VIP is based on the principle that an air vacuum reduces conductivity so that it will reduce the amount of heat transfer between the exterior wall and ambient environment. VIP reduces not only energy consumption but also insulation thickness so that refrigerator capacity is expanded ^[54]. The U.S. Department of Energy highly recommends this technology ^[52] for further R&D.

Both wired network and wireless network technology can be used for realizing PF16 and PF2. 10:1 scale is used to evaluate the quality of connection and easiness of interference. Wired network has solid connection, but it needs a more network infrastructure in the kitchen. Wireless is flexible, but is easily compromised by interlopers. It also has wireless coverage issue, meaning that if there is no wireless coverage this refrigerator would not function as intended, therefore the infrastructure must be in place. Although Bluetooth and Zigbee have low energy consumption, it is hard for them to be used to hook the refrigerator to home network because they are normally used for short distance communication, for example, communication between appliances in the kitchen.

Table 5 Networked/Connected technologies analysis

Networked/Connected technologies	Quality	Priority	Energy consumption
Wired	10	1	High
Wireless - WiFi	8	1	Moderate
Wireless - Bluetooth	7	2	Low
Wireless - Zigbee	7	3	Low

Once the refrigerator is online, Smart grid technology is needed to support the feature PF2. Utility companies are able to offer time-of-use pricing structure.

In order to meet PF7, we need to estimate available technologies and prioritize them and focus on the one with highest priority. The traditional refrigerators consume most energy powering the vapor-compression cycle, which uses a compressor and multiple heat exchangers to transfer heat from inside the food compartments to outside the refrigerators. Table 6 below lists technologies with radical innovation for the refrigerator cycle ^[53], and we prioritize them with 10:1. If left blank, we won't consider it.

Table 6 - Radical refrigerator cycle innovation

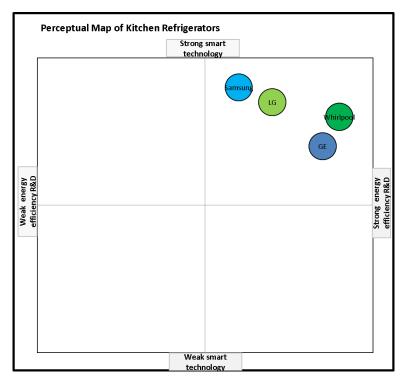
Technologies	Description	Priority
Acoustic refrigeration	Uses sound waves to produce cooling	10
Ammonia	Uses ammonia to drive the cooling system	
	Uses the ability of a material to change	
Electrocaloric refrigeration	temperature by applying an electric field	10
	Uses water pressure to compress and	
Hydraulic refrigeration	condense the refrigerant	10
Magnetic refrigeration	Uses magnetocaloric effect	1
Optical cooling	Uses anti-Stokes fluorescence principal	10

From Table 6 above, magnetic refrigeration has highest priority and should be used for the radical refrigerator cycle innovation. It has no compressor, so it operates very quiet. It can be 50% more energy efficient than conventional techniques, it doesn't rely on environmentally harmful gas ^[55].

Table 7 below shows the link between product features and technologies

Table 7 - Product features and Technology association

Product features and technology association				
ID	Description	Links		
PT1	VIP	PF1		
PT2	Networked/Connected	PF16		
PT3	Refrigerator cycle innovation	PF7		
PT4	Smart grid	PF2		


4.5 Resources

After we resolve links between product features and technologies, we need to consider resources and partnerships to support these technologies.

VIP technology (PT1) is currently available, but the performance is inconsistent. GE is the leading company on this area and files a few patents for the technology. In the mid-term (2-3 years), R & D efforts for GE are ^[52]:

- Test characterization on products having inconsistent performance
- Find out root causes for contributing performance inconsistencies
- Optimize the supply chain of all materials and processes used in the manufacture of VIPs
- Reduce costs

GE is short of networked/connected technology. The shortage can be resolved by partnership such as a smart phone company, solid component supplement, supporting software, and OS such as android. R & D efforts are software and integration. GE needs to optimize its smart grid technology via software optimization.

Figure 5 - Perceptual Map of Kitchen Refrigerators

GE started magnetic research in 2010 funding from US Department of Energy ^[50], GE R&D efforts in 5 years still are:

- Further understanding of magnetic refrigeration cooling principles
- Optimization of individual components of the system
- Demonstration of required cooling capacity
- Cost reduction

Fig 6 below shows perceptual map of kitchen of kitchen refrigerators. The findings are gaps GE needs to be improved.

Fig 7 shows the TRM for GE Kitchen Refrigerators

		Current	Mid-term	Future	
		D1 - Low energy consumption			
	Operation	D3 - Mantains temperature			
S		D4 - Smart Technology			
e c		D6 - Preserves food & freshne	SS		
Drivers	Reliability				
	Kitchen				
	Dispense				
	Cost				
	Refrigerator Cycle			PF7	
	Ice maker/dispenser				
l é	Doors and insulation		PF1		
Features	Cabinetry and shelves				
ea	Air flow				
	Controls/display		PF2		
			PF16		
	Insulation		PT1		
Tech	Communication		PT2		
Te	Software optimization		PT4		
	Cooling technology				
S	Intenal R&D	VIP R&D			
Ce		Optimization SW for smart gri	d		
esource		Magnetic refrigerator R&D			
esc	External	Materials for magnetic refrige			
R	Parntership	Wired/wireless and smart phone application			

Figure 6 - TRM for GE Kitchen Refrigerator

5 RECOMMENDATIONS

This study proves that the use of technology roadmapping in the development of a refrigerator for General Electric to produce is a viable methodology for experts within GE to come together to identify the market desires, technology developments, and policy requirement which will shape their business to come.

What is lacking from this study are real world costs and margins for each of the technologies identified for inclusion into the refrigerator of the future. Without that information it is entirely possible that the concept refrigerator we came up with largely a pie in the sky product. That is not to say that this was not

a useful exercise because it is possible that with cost reduction in technologies, changes in market drivers, and changes in policy requirements that some technologies will be kept and others will be left by the wayside.

6 CONCLUSION

As described above, this technology roadmapping study was performed by the authors as self-described experts working in General Electric's home consumer refrigeration business unit. The technology roadmap we provide in this study can help GE leverage their technological acumen through their diverse product lines, partnerships, and research and development to create, potentially, the ultimate refrigerator.

Through this study we performed a SWOT analysis which found organizational gaps and beneficial structures GE has for future growth. This was an initial step for the process of looking into GE as a contender in the refrigerator market.

We looked into Quality Function Deployment to identify and prioritize the market drivers, features, technologies, and resources which identified low energy consumption and smart technology as the most important driver. Therefore, radical refrigerator cycle – magnetic refrigeration innovation, networked/connected, VIP, smart grid technologies are needed to be improved or developed within the U.S.

Through these steps we have created a useful device in the form of a technology roadmap for General Electric to make educated acquisitions, focused research and development, and have an easily accessible communication tool for stakeholders and internal developers to create the potentially ultimate refrigerator.

7 REFERENCES

- Olivia Zaleski, "Energy Efficient Appliances to Upgrade Your Kitchen," Internet: www.thedailygreen.com/green-homes/latest/green-remodeling-energy-efficient-kitchenappliances-460212#slide-1, [Aug 2, 2013]
- 2. Saving Eletricity, "How much electricity does my refrigerator use?" Internet: michaelbluejay.com/electricity/refrigerators.html, June 2013, [Aug 2, 2013]
- Energy Star, "Refrigetors for Consumes," Internet:www.energystar.gov/index.cfm?fuseaction=find_a_product.showProductGroup&pgw_ code=RF, [Aug 2, 2013]
- 4. theKitchen, "Is This the Refrigerator of the Future," Internet: www.thekitchn.com/is-this-the-fridge-of-the-future-187356, [Aug 2, 2013]
- 5. Lesie Claggett, "Smart Refrigerators," Internet: www.kbbonline.com/Smart-Refrigerators-3252.shtml, May 15, 2012, [July 31, 2013]
- 6. Wireless Integrated, "Smart Refrigerator," Internet:www.wirelessintegrated.com/smart-refrigerator-samsung-t9000.html, March 11, 2012 [July 31, 2013]
- Companies and Markets.com, "US refrigerator market dominated by Whirlpool Corp with 20% of volume sales," Internet: www.companiesandmarkets.com/News/Consumer-Goods/US-refrigerator-market-dominated-by-Whirlpool-Corp-with-20-of-volume-sales/NI5976, [Aug 2, 2013]
- Carbon Trust, "Refrigeration Road Map," Internet: www.epa.gov/greenchill/downloads/RefrigerationRoadmap.pdf, [July 21, 2013]
- 9. U.S. Department of Energy, "Research & Development Roadmap for Next-Generation Appliances", March, 2012 [July 31, 2013]
- GE Industrial Solutions, "New Products", Internet: www.geindustrial.com/pressroom/press_releases/electrical/new_products/launch_Industrial_e nergy_efficiency_coalition.htm, [Aug 2, 2013]
- Phaal, R., Farrukh, C. J. P., & Probert, D. R., "Technology roadmapping—A planning framework for evolution and revolution," Technological Forecasting and Social Change, Vol. 71, pp. 5–26, 2004
- 12. Phaal, R., & Muller, G., "An architectural framework for roadmapping: Towards visual strategy," Technological Forecasting and Social Change, Vol. *76, No.* 1, pp. 39–49, 2009
- Government Canada, "Technology Roadmapping: A Guide for Government Employees," Internet: www.google.com/#bav=on.2,or.r_cp.r_qf.&fp=111dd949e5b38d4b&q=technology+roadmap+be nefits, [Aug 4, 2013]
- 14. R.N. Kostoff and R.R. Schaller, "Science and technology roadmaps," IEEE Trans. Eng. Manage., vol 48 , no. 2, pp. 132-143, May 2001
- 15. T. Tran and T. Daim, "A taxonomic review of methods and tools applied in technology assessment," *Technological Forecasting and Social Change*, vol. *75, no.* 9, pp. 1396–1405, 2008
- 16. A. Lamb et al., "Forecasting airplane technologies," J. Transport. Sys Eng. Inf. Techno., vol 12, no. 6, pp. 38-54, 2010.
- 17. T.U. Daim at al., "Forecasting emerging technologies: Use of bibliometries and patent analysis," *Technological Forecasting and Social Change, vol. 73, no. 8, pp. 981-1012, Oct. 2012*

- 18. T. Daim et al., "Forecasting powertrain technologies," J. Transport. Sys Eng. Inf. Techno., vol 11, no. 2, pp. 58-69, 2011.
- 19. J. Kim et al., "A look at the future of wireless technologies," Technol. Anal. Strat. Mange., vol. 22, no. 8, pp. 925-943, 2010
- I. J. Petrick and A. E. Echols, "Technology roadmapping in review: A tool for making sustainable new product development decisions," Technol. Forecast. Social Change, vol. 71, pp. 81–100, 2004.
- H. Chris and M. Ferrill, "The application of operation and technology roadmapping to aid singaporean SMEs identify and select emerging technologies," Technol. Forecast. Social Change, vol. 72, no. 3, pp. 349–357, Mar. 2005, Managing Emerging Technologies in Asia.
- O. Saritas and M. A. Oner, "Systemic analysis of UK foresight results: Joint application of integrated management model and roadmapping,"Technol.Forecast.SocialChange,vol.71,Roadmapping:From Sustainable to Disruptive Technologies, no. 1–2, pp. 27–65, Jan./Feb. 2004.
- 23. S. Lee, S. Kang, Y. S. Park, and Y. Park, "Technology roadmapping for R&D planning: The case of the Korean parts and materials industry," Technovation, vol. 27, no. 8, pp. 433–445, Aug. 2007.
- 24. N. Intarode and T. Daim, "Technology roadmapping: 2010 to 2050 global cement product roadmap," Int. J. Technol., Policy, Manage., vol. 11, no. 2, pp. 173–186, 2011.
- 25. B. Wang, D. Kocaoglu, T. Daim, and J. Yang, "A decision model for energy resource selection in China," EnergyPolicy,vol.38,no.11,pp. 7130–7141, 2010.
- K. Cowan, T. Daim, and T. Anderson, "Exploring impact of technology development and adoption for sustainable hydroelectric power and storage technologies in the Pacific Northwest United States," Energy, vol. 35, pp. 4771–4779, 2010.
- 27. T. Daim, G. Kayakutlu, and K. Cowan, "Developing oregon's renewable energy portfolio using fuzzy goal programming model," Comput. Industrial Eng., vol. 59, no. 4, pp. 786–793, 2010.
- 28. K. Cowan and T. Daim, "Assessing renewable energy portfolio fu- tures with multiple perspectives," Technol. Society, vol. 32, no. 4, pp. 255–263, 2010.
- T. Daim, W. Schweinfort, and G. Kayakutlu, "Technology assessment of two energy portfolios using a hierarchical decision model," Int. J. Energy Sector Manage., vol. 4, no. 1, pp. 24–43, 2010.
- G. Harell, N. Third, and T. Daim, "Is Nuclear energy an alternative: A caseoftechnologyassessmentinoregon,"Int.J.NuclearGovernance, Economy, Ecology, vol. 3, no. 2, pp. 150–179, 2010.
- 31. I. Kockan, T. Daim, and N. Gerdsri, "Roadmapping future powertrain technologies: A case study of ford otosan," Int. J. Technol., Policy, Manage., vol. 10, no. 1–2, pp. 157–184, 2010.
- 32. D. Cinar, G. Kayakutlu, and T. Daim, "Development of future energy scenarios with intelligent algorithms: Case of hydro in Turkey," En- ergy, vol. 35, no. 4, pp. 1724–1729, 2010.
- M. Amer and T. Daim, "Application of technology roadmaps for renewableenergysector," Technol. Forecast. Social Change, vol. 77, no. 8, pp. 1355–1370, 2010. [32] P. Kofman, "The production of wood pellets," Coford Connects, vol. Processing/Products, no. 10, 2007, Dublin, Ireland: National Council for Forest Research & Development.
- 34. Sukumar Devotta et al., "IPCC/TEAP Special Report: Safeguarding the Ozone Layer and the Global Climate System," Internet: www.google.com/#bav=on.2,or.r_cp.r_qf.&ei=Y9D-UfOrE4OoiQKLw4C4CA&fp=111dd949e5b38d4b&q=refrigerator+market+drivers&sa=N&start=6 0, [Aug 4, 2013]
- 35. EPA, "ENERGY STAR Residential Refrigerators and Freezers," Internet: www.google.com/#bav=on.2,or.r_cp.r_qf.&ei=Fcn-

Ua3JJ6WViALcxoCADA&fp=111dd949e5b38d4b&q=refrigerator+market+drivers&sa=N&start=50 , July 25, 2011 [Aug 4, 2013]

36. Intertek, "Evolving Smart Technologies Across Home Appliance and Consumer Electronics Markets",

Internet:www.google.com/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=25&cad=rja&ve d=0CFkQFjAEOBQ&url=http%3A%2F%2Fwww.appliancedesign.com%2Fext%2Fresources%2FAM %2FHome%2FFiles%2FPDFs%2FEvolvingSmartTechnologies.pdf&ei=0db-UfzRNqnriwLEwICICQ&usg=AFQjCNG4uAlap38pBIpS3zqI-MsUaoTIJA&sig2=fR1JFBAKCyckrxpBerZzqQ, [Aug 2, 2013]

- 37. Wikipedia, "SWOT analysis," Internet: en.wikipedia.org/wiki/SWOT_analysis, [Aug 2, 2013]
- L. Halbeib, P. Wormington, W. Cieslak, and H. Street, "Application of QFD to the design of a lithium battery," *IEEE Trans. Comp., Hybrids, Manufact. Technol.*, vol. 16, pp. 802–807, Aug. 1993.
- 39. H. Hjort, D. Hananel, and D. Lucas, "Quality function deployment and integrated product development," *J. Eng. Design*, vol. 3, no. 1, pp. 17–29, 1992.
- 40. I. Erikkson and F. McFadden, "QFD: A tool to improve software quality," *Inform. Software Technol.*, vol. 35, no. 9, pp. 491–498, 1993.
- 41. A. Terry et al., "A Tutorial On Quality Function Development," Engineering Management Journal, Vol. 5, No. 3, pp. 24-35, 1993
- Gilbert D. Logan et al., "Potential for Use of a House of Quality Matrix Technique in Rehabilitation Engineering," IEEE Trans on Rehabilitation Engineering, Vol. 5, No. 1, pp. 106-115, 1997
- 43. A. Tolga Bozdana, "Quality Function Deployment (QFD)", Internet: www1.gantep.edu.tr/~bozdana/ME530_2.pdf, [Aug 10, 2013]
- Creative Industries Research Institute, "Quality Function Deployment,", Internet: www.ciri.org.nz/downloads/Quality%20Function%20Deployment.pdf, [Aug 10, 2013]
- Clemson University, "Quality Function Deployment,", Internet: www.clemson.edu/ces/credo/classes/Lect4016.pdf, [Aug 2, 2013]
- 46. A. M. Lamb et al., "Wood Pellet Technology Roadmap," IEEE Transactions On Sustainable Energy, Vol. 3, No. 2, pp. 218–230, 2012
- 47. Slideshare, "GE Appliances," Internet: www.slideshare.net/9855274090/presentation1-geappliances-10012716, [Aug 11, 2013]
- 48. Slideshare, "General Electric," Internet:www.slideshare.net/scholarballer51/general-electricpresentation-13254459, [Aug 11, 2013]
- 49. GICL, "Refrigerator Whirlpool," Internet: gicl.cs.drexel.edu/wiki/Refrigerator_Whirlpool, [Aug 11, 2013]
- Tracey Schelmetic, "Getting Closer To Magnetic Refrigeration," Internet: news.thomasnet.com/green_clean/2010/07/07/getting-closer-to-magnetic-refrigeration/, July 7th, 2010 [Aug 4, 2013]
- 51. Andrew Gaved, "Magnetic refrigeration technology set to break through," Internet: www.racplus.com/news/magnetic-refrigeration-technology-set-to-breakthrough/8648701.article, May 30, 2013 [Aug 2, 2013]
- 52. US Department of Energy, "Research & Department Roadmap for Next-Generation Appliances", March 2012
- 53. Carbon Trust, "Refrigeration Road Map", March 2010

- 54. PRODUCTGUIDE, "LG-One 21 cu.ft French Door Refrigerator with Smart ThinQ[™] Technology (LFC31995)," Internet: www.electronichouse.com/product/details/french_door_refrigerator_with_smart_thinq_techn ology/, [Aug 14, 2013]
- 55. Greenfootsteps, "Magnetic Refrigeration the new eco-friendly way to keep things cool?" Internet:www.greenfootsteps.com/magneticrefrigeration.html#sthash.MQIzAr3Z.trsgRReE.dpbs, [Aug 14, 2013]
- 56. EIA, "End-Use Consumption of Electricity 2001," Internet: www.eia.gov/emeu/recs/recs2001/enduse2001/enduse2001.html, [Aug 15, 2013]