

 ETM OFFICE USE ONLY

Report No.:

Type: Student Project

Note:

Strategic Upgrades
A vehicle routing overview and implementation for Nokia Siemens

Network

Course Title: Operations Research

Course Number: ETM 540

Instructor: Dr. Tim Anderson

Term: Fall

Year: 2013

Author(s): Lukas Kessler, Chris Davis, Farzad Moshfegh, Jerrod Thomas

Page | 2

Abstract

The Traveling Salesman Problem (TSP) is combinatorial optimization problem that has real-

world synonyms for many organizations and problem types [1]. In this paper we discuss various

implementations of the Vehicle Routing Problem (VRP), an extension of the traditional traveling

salesman problem and explore a best-fit solution as well as a heuristically derived “good”

solution. The best-fit solution utilizes a branch and bound technique but requires an exponential

amount of computational resources to complete when applied to problems of marginal size.

Some heuristic methodologies are elucidated to compare and contrast their benefits and

drawbacks and an open source solution for capacitated vehicle routing that utilizes a tabu search

heuristic is chosen for a pilot data. Next we compare the results of small batch runs between our

best-fit and “good” solutions, exploring projections based on our real-world output. We conclude

with our routing solution pilot data and recommendations for utilization by Nokia Siemens

Networks as part of their ongoing equipment upgrade and deployment tool set.

Page | 3

Table of Contents

1 Introduction ... 4

1.1 Company Information .. 4

1.2 Problem Description ... 4

2 Theoretical Background .. 错误!未定义书签。

2.1 Traveling Salesman Problem ... 5

2.2 Vehicle Routing Problem ... 8

3 Techniques to solve the problem ... 8

3.1 Exact Solutions ... 10

3.1.1 Branch and Bound Technique ... 10

3.1.2 Branch and cut Technique .. 11

3.2 Heuristic Solutions ... 12

3.2.1 Evolutionary or Genetic Algorithms ... 12

3.2.2 Tabu Search .. 14

4 Methodology .. 15

4.1 Branch and Bound implementation in The R Project for Statistical Computing 16

4.2 Tabu Search using Open VRP .. 19

4.3 Pilot data set ... 19

5 Analysis .. 20

5.1 Comparing relative fitness of various techniques 错误!未定义书签。

5.1.1 Computational requirements .. 错误!未定义书签。

5.1.2 Time-to-compute plotting .. 错误!未定义书签。

5.2 Implementation of pilot data .. 23

6 Conclusion ... 26

7 Acknowledgements ... 27

8 References ... 错误!未定义书签。

Page | 4

1 Introduction

In order to properly frame the requirements needed by Nokia Siemens Networks, we will review

the basics of the traveling salesman problem, its formulation, and various techniques on solving

this exigent problem in computer science and operational research. We begin with the

background information and problem formulation.

1.1 Company Information

Nokia Siemens Networks (NSN) is one of the major vendors for telecommunication operations

in Iran and within the last decade, it has been participating in various segments within the

telecommunication industry. One of the main customers of NSN is MTN Irancell, the second

largest mobile phone network in Iran. NSN provides infrastructure for Irancell and has the main

share of the projects around the country; from acquisition and simple drive test projects to

upgrading to the most sophisticated cellular equipment. Tehran, the capital of Iran, is where

some of the main clusters of NSN projects are located, which are the most sensitive projects in

the region. Because of this sensitivity, providing the best service in the minimum possible time is

one of the primary objectives of NSN in Iran.

1.2 Problem Description

Nokia Siemens Networks in Tehran, Iran is looking for assistance in optimizing their base

transceiver station upgrade project and would like a reproducible model for scheduling,

deploying, and routing their upgrade crews and vehicles as efficiently as possible. The current

method involves routing trucks based on ad-hoc decisions of location and type of installation, but

the management has noticed significant errors in either over-scheduling or under scheduling

Page | 5

resulting in more slack and overall project timeline slippage than desired. They would like to

have a system that can be used to input a large dataset of distances or travel times, equipment

upgrade time estimates. Its output should be a route and schedule that they can assign to their

crews each day. In many cases, even the best estimates will be faulty and the possibility of

rerunning the remaining upgrade sites will be required as the project progresses. As such, any

solution should be easy to modify and re-run at scale in a reasonable amount of time; i.e. in less

than 30 minutes.

2 Literature Review

As exposed in the previous chapter, the concept of the planning the routes or more commonly

“tours” is an important aspect of the task. For the planning of the tours one must first distribute

the towers to each planned day and then the teams to each tour which determines the order of

towers they visit within a day. These problems can be identified as classical problems of the tour

from the field of Operations Research. Through a literature review in the following sections we

will define a model of the Traveling Salesman Problem and the Vehicle Routing Problem which

will be worked out.

2.1 Traveling Salesman Problem

The background of the Traveling Salesman Problem (TSP) is that a traveling agent needs to plan

a trip that begins at a starting point and he is required to visit a number of “cities” or locations,

exactly once each, and then return to the starting location (see Fig. 1).

Page | 6

Fig. 1: Graphical representation

of the TSP [34]

The problem of the TSP was probably first mentioned in

1831 in an article by B. F. Voigt. The vernacular of the

traveling salesman is not mentioned used, however the

idea itself is described [2]. “Traveling Salesman

Problem” was first mentioned in the 1930s, though it is

unclear where the actual attribution should be given to [3].

The TSP is one of the most basic, important, and

studied problems in combinatorial optimization [4], its

importance mainly due to its application in solving higher-level, practical problems [5]. An

example when the TSP model is used is to determine the routes of the individual vehicles in the

vehicle routing problem. Another example is the sequence determination of orders that need to

be done on a machine [6]. The TSP is a NP-complete
1
 problem [7]. The fact that it is difficult to

solve, and at the same time easy to formulate, is responsible for the numerous studies on the TSP

[8].

From a graph-theoretical point of view, the TSP can be described as a directed graph G = (V, A)

[5], [9]. The node set V = {1, ..., m} is the set of all the places to visit with m as the number of

places. The quantity of arcs A = {(i, j): i, j ε V and i ≠ j} is the set of connections between the

locations. With (cij), i, j ε V, i ≠ j, it is referred to the distance matrix wherein each arc (i, j) is

assigned to a distance cij. When solving the TSP, it is looked for a cycle which contains each

node exactly once (so-called Hamiltonian cycle) [9]. The above applies to the so-called

asymmetric TSP thus cij ≠ cji. A special case of the asymmetric TSP is the symmetric one, thus cij

= cji. Here the undirected graph G = (V, E) is considered.

1
 Attribute of (optimization) problems, such problems are probably not efficiently resolvable in

deterministic polynomial time [7].

Page | 7

E is the set of edge {{i, j}: i, j ε V, j ≠ i} [5]. There are various models for the classical TSP
2
, in

the following the advanced mapping model will be introduced, as it is the most commonly used

one. In the equations below Δ+(i) or Δ-(i) describe the set of all successors or predecessors of i.

xij is the binary decision variable that is one if the place j is visited immediately after i [5].

The objective function of the model is shown in equation (1), in which the cumulative distance

should be minimized.

(1)

Equation (2) and (3) guarantee that every place is exactly visited once and then left [5]:

 (2)

 (3)

The decision variables xij are binary [L5]:

(4)

Moreover subtours
3
 have to be forbidden for which different options exist [5], [10]:

1. Explicit banning subtour by subtour due to elimination conditions

2. The MTZ formulation by Miller, Tucker and Zemlin

3. The multi-commodity flow model

At this point, the MTZ formulation is exemplified. For this formulation the auxiliary variables ui

and uj have to be introduced: ui, uj ϵ V \ {1} [5] [11]. According to the MTZ formulation (m-

1)*(m-2) subtour elimination conditions are required.

 ui - uj + m*xij ≤ m-1 ∀ (i,j) ∈ A, i, j≠1 (5)

2
 Examples are: mapping model, 2-Matching-model (only for the symmetrical TSP), 1-tree-

model (only for the symmetrical TSP), square mapping model, 2-Warenflußmodell, m-way

model
3
 Subtours are tours which to not cover all places in the set of nodes V, thus they are not

connected to the origin and form degenerate tours between intermediate nodes [35]

 ∑ ()

∑
 ()

∑
 ()

Page | 8

2.2 Vehicle Routing Problem

After the description of the TSP in the following the the so-called vehicle routing problem (VRP)

will be discussed. The VRP was first studied by Dantzig and Ramser in 1959, to solve the

problem of "Truck Dispatching" [12]. In the followong 50 years, particularly in the 1980s, the

VRP was further developed and many variants emerged, which are tailored to specific problems

[13]. With further development of technical innovations, such as the location via GPS, the VRP

nowadays plays an important role in the logistic [14].

Similar to the TSP the VRP deals with the problem that a given amount of places, hereinafter

referred to as customers, has to be visited from a depot. However, in the VRP the customers are

not served in a single tour. Every customer has non-negative demand of di. However, the vehicle

k (it is also possible that a number of vehicles is available; k ∈ V = {1,..., k}) has a limited

capacity of q. Thus, the cumulative demand of all customers may exceed the capacity of a

vehicle. Consequently, several tours have to be assigned. Thus, customers have to be assigned to

routes and the order of every single route in which they should be served has to be determined

[15], [16]. Figure 2 points out the idea of the VRP.

Fig. 2: Graphical representation of the VRP [11]

Page | 9

Like the TSP the VRP can be described as a directed graph G = (N, A). N = {0} ∪ C ∪ {n+1}

represents the set of customers, while 0 and n+1 stand for the depot [17]. Thus, another set of

customers is needed: C = {1,…,n}, which represents the set of customers without the depot [18].

Like in the TSP the arcs are represented by A (A ⊆ NxN). Also cij; i,j ∈ N; i ≠ j represent travel

costs for each arc. The objective is to minimize the total distance [5], [16], [17], [18]:

min z = ∑ ∑ ∑ 𝑘
 (6)

xijk a binary decision variable that is one if vehicle k drives from customer i to customer j (xijk

{0,1}, ∀ (i,j) A, ∀ k V). Various constraints are needed to complete the model. First, it has to

be ensured that all customers will be served:

∑ ∑ 𝑘 = 1, ∀ i C (7)

Second, an equation is needed that the sum of the demand of the customers cannot exceed the

capacity of the vehicle:

∑ ∑ 𝑑 𝑘 ≤ q, ∀ k V; i ≠ j (8)

Additionally, only one route is possible for one vehicle and it starts at the depot. It is possible

that the tour is empty, thus the vehicle drives from 0 to n+1.

∑ 𝑘
 = 1, ∀ k V (9)

Moreover, the decision variables have to be binary:

 𝑘 ∀ () ∀ (10)

The tours have to end at the depot:

∑ 𝑘
 = 1, j = n+1, ∀ k V (11)

Next, the vehicles arrive and depart from the customers:

∑ ℎ𝑘
- ∑ ℎ 𝑘

=0, ∀ h C; ∀ k V (12)

Page | 10

In analogy to the TSP subtours also have to be eliminated, n is the maximum number of nodes

any vehicle k can visit:

ui - uj + n*xijk ≤ n-1 ∀ (i,j) A, i, j≠1, ∀ k V (13)

3 Techniques to solve the problem

There are a few different methods that will help to find a solution for vehicle routing. The

method will be selected based on its flexibility, simplicity, accuracy and speed. The primary

objective that needs to be analyzed, is to minimize the amount of time it takes for a tower

maintenance team to upgrade as many towers in a specific region. In the following one will first

shed light on exact solution techniques and second on heuristics.

3.1 Exact Solutions

Basically, for these problems an optimal route can be found. However, such a solution proves to

very extensive and complex for larger problems [5]. In the following the basic ideas of two

methods, namely, the branch-and-bound and the branch-and-cut method are presented. The VRP

is a NP-hard problem, which consists of determining optimal routes that covers the demands of

the customer without using too many vehicles [19]. The branch and bound method is a way of

finding an exact solution to the VRP. The branch and cut method is another way of determining

the optimal solution.

3.1.1 Branch and Bound Technique

The branch and bound method of solving VRP is a common method to use when dealing with a

larger VRP sometimes with multiple depots. A branch and bound algorithm uses a divide and

conquer method to partition the solution space into sub-problems and then optimizes individually

Page | 11

over each sub-problem [20]. To continue the algorithm for this method one of the candidate sub-

problems will be selected and processed. There are four possible results. In the processing or

bounding phase the problem set is relaxed. When that is done solutions that are not in the

feasible region are admitted. Solving the relaxation will yield a lower bound on the value of an

optimal solution. If a feasible solution is better than the previous one found then the new

solution will replace that solution and the process continues. If there is a point where the sub-

problem can no longer be discarded or pruned, then the problem is branched and the children of

the sub-problem is added to the list of active candidates. This process is continued until the list of

active candidate sub-problems is empty; at which point the current best solution is optimal.

3.1.2 Branch and cut Technique

Branch and cut method is a combination of cutting plane algorithm and branch and bound

procedure. Branch, cut and price (BCP) is an LP-based branch and bound technique for solving

large-scale discrete optimization problems. In BCP, both cuts and variables can be generated

dynamically throughout the search tree. A well-known example of application of cutting plane

method has been developed in 1958 by Gomory [21]. The starting situation is generally the

dissolved LP relaxation of the original problem, followed by a separation problem [22]. Thus

new inequalities are generated that the feasible region of the original problem is reduced (by

non-integer and therefore not allowable solutions are forbidden). This is followed by a re-

optimization of the LP relaxation using the dual simplex method [23]. This procedure is repeated

until either the relaxation of the original problem is admissible or no-injured section planes

longer exist. The branch-and-cut algorithm combines the two mentioned methods in a way that is

every node of the branch-and-bound method the feasible region is narrowed down with the

cutting plane method. Thus it can efficiently find the optimal solution.

Page | 12

Besides the above Branch techniques, it should finally be mentioned that explicit enumeration

(i.e. finding a solution due to “try-and-error”) can provide an exact solution for routing problems.

3.2 Heuristic Solutions

Heuristic methods perform a relatively limited exploration of the search space and typically

produce good quality solutions within modest computing times. The heuristics, which have been

created for VRP, are general modifications of "traveling salesman problem" heuristics [24]. They

are of 4 different types: 1) tour building heuristics, 2) tour improvement heuristics, 3) two-phase

methods, and 4) incomplete optimization methods.

The incomplete optimization method is the more commonly used method and will be the method

that is most closely resembled for the purpose of this project in assigning the entire population of

the cell tower improvement fleet to their respective routing maps using distance as the overall

objective to optimize. Incomplete optimization methods apply some optimization algorithm, such

as branch and bound. Over the years heuristic methods that are applied to the VRP have been

modified and new ones have been created. The basic methods mentioned above are still the more

commonly used methods. The quest for faster heuristics has been going on since the beginning of

computerized solutions to VRPs, but developments are still taking place and will continue to

evolve over time to create the fastest most effective method to solving the VRP [25].

3.2.1 Evolutionary or Genetic Algorithms

The evolutionary or genetic algorithm (GA) is an adaptive heuristic search method based on

population genetics [26]. The creation of a new generation within the algorithm involves four

fundamental steps or phases: representation, selection, recombination, and mutation. The four

Page | 13

phases can be described as such: representation is the population of the decision variable that

will be evaluated in the algorithm; then selection is a way of evaluating each solution in the

population and selecting one of the parent solutions. Recombination is a way of applying

crossover and mutation operators to parent solutions to generate offspring solutions and the

mutation phase is replacing the old population with the new population of offspring solutions

[27]. This process is repeated for a number of iterations or until the system does not improve

anymore. A simple GA can be created as follows:

1. Create an initial population of P solutions. In the context of this project for upgrading cell

phone towers the population will be created with sub-groups of the overall population of

cell towers, divided into smaller districts that each upgrading team will have on their

route.

2. Evaluate each solution.

3. Repeat for a fixed number of iterations:

3.1. Repeat until P offspring solutions are created:

3.1.1. Select two parent solutions in the population (with replacement) using a

randomized selection procedure based on the solution values.

3.1.2. Apply crossover to the two parent solutions (with certain probability) to

create two offspring solutions. If crossover is not applied, the offspring are

identical to the parents.

3.1.3. Apply mutation (with certain probability) to each offspring.

3.1.4. Insert the two offspring in the new population.

3.2. Evaluate each offspring in the new population.

4. Return the best solution found.

Page | 14

The initial population for step 1 can be created randomly, but it is better to use construction

heuristics to create at minimum a small fraction of the population.

3.2.2 Greedy insertion

Greedy insertion or greedy algorithms in general

are simplified techniques for finding the optimal

solution. In a since, the GRG Nonlinear solver is a

greedy solver in that it always picks the best

answer adjacent to its present location. Though

this solution technique is generally quick for

locating solutions, it also tends to get caught with

local optima, or to make missteps in node or adjacency maps. We talk about it briefly here, as

most heuristic and meta-heuristic techniques require a starting model to create a solution to begin

the exploration of the problem area. A simplified illustration of a greedy search is shown in Fig.

3 that demonstrates how a greedy algorithm can easily incorrectly assess a maximization

problem attempting addition over a node structure.

3.2.3 Tabu Search

The Tabu search is a meta-heuristic class of search techniques that uses adaptive memory and

responsive exploration. These search techniques “are capable of searching the solution space

economically and effectively” [1] and it is because of this that many researchers have tested and

adapted the technique with some success; particularly for solving various VRP formulations [28],

[29]. The tabu search method for solving a vehicle routing problem cannot guarantee an optimal

solution, but does take an efficiency approach to looking for optimal, likely local optima if the

Fig. 3: Greedy algorithm vs. actual

largest path (maximization error) [36]

Page | 15

problem set is large. Because it uses a memory-based methodology, tabu search can utilize a

strategy-based technique with the “supposition that a bad strategic choice can yield more

information than a good random choice [1]. The algorithm considers a sequence of adjacent

solutions obtained by repeatedly removing a vertex from its current route and reinserting it into

another route [29]. To avoid cycling solutions throughout tabu search’s iterative process, some

attributes of recently explored solutions are temporarily declared tabu or forbidden. The duration

that an attribute remains tabu is called a tabu-tenure. It can vary over different intervals of time

and the tabu status can be overridden if certain conditions are met. Various techniques are often

employed to diversify or intensify the search process; this relates to intensifying the search

around the “elite” solutions, or diversification to invoke a solution that might break out of

situations where the search appears to be stuck at a local optima.

4 Methodology

The project team quickly realized that implementing of a solution within Excel or utilizing any

technique described within the materials of our course was infeasible for the size of our pilot data

set: 35 nodes or base transceiver stations, which have to be upgraded. We began exploring

various options available and ultimately came across an open-source implementation of a tabu

search algorithm called Open-VRP written in Common LISP.

With our initial formulation of the VRP model we received some invaluable aid from our

graduate teaching assistant, Dong-Joon Lim–an expert in operation research and a proficient

programmer in The R Project statistical programming environment. He was able to implement

the model in R Project and began running tests of our pilot data with approximately four weeks

remaining in our ten-week term. This provided us two avenues to test our VRP and look for a

feasible solution. In this section we will discuss the two implementations and their outcomes.

Page | 16

4.1 Implementation in The R Project for Statistical Computing

R is a free programming language for statistical computing and statistical graphics. R is part of

the GNU Project and is available on many platforms. It is increasingly seen as the statistical

standard language in both the commercial as well as in the scientific field and was developed in

1992 by Ihaka and Gentleman at the University of Auckland [30]. Due to the implementation of

the provided model in section 2.2 the problem could be solved with a Branch and Bound

algorithm (see sec. 2.2). Thus, in our case “n” represents the set of towers, which can be thought

of as the customers. The travel costs cij are measured in minutes between the towers, hence not

the distance is minimized, but instead it is the time needed to serve all towers and the travel time

needed. Moreover, di represents the demand from each tower. Thus, the time needed to update

the tower. The capacity, or available time for each team is also measured in minutes totaling 480

minutes, or one eight-hour day. The result would be optimal routes shown as different clusters of

each tour for each team, for each day. In our initial runs, Dong-Joon tested the code utilizing 3-5

tower locations. After successfully defining a route,

he then started the algorithm at work on our full

problem set of 35 nodes.

After a week, we still did not have an answer. After

some back-of-the-napkin calculations we started to

realize that it was unlikely that our full suite of

locations could be calculated in a reasonable time

using our formulation and we decided to estimate

how long it would take to calculate the optimal

solution by calculating the average running times with lower-values of n. Dong-Joon then moved

Table 1: Actual Runtimes of R

Model. Average of five runs for n =

{3-12}.

n Average runtime (sec)

3 0.002

4 0.006

5 0.012

6 0.018

7 0.036

8 0.084

9 3.244

10 19.966

11 23.734

12 867.502

Page | 17

the full problem set to a much faster research-designed compute server as well as running timing

cases with values for n = {3…12} as shown in Table 1. With this information in hand, we

decided to model the trend of the average runtime.

The model takes the form:

 . (14)

Whereas dn is defined as:

dn(a,b,c) (
) (15)

To measure how good the model fits the sum of squared differences will be employed [L19]:

min z = ∑ 𝑑
() 2

 (16)

No further constraints are needed, and the model can be solved with the GRG Nonlinear Solving

method provided by Microsoft Excel. However, as the model is non-linear and the GRG-

algorithm does not necessarily provides a global optimum so we enhanced the model with the

following constraints to make it possible to use multiple starting points:

-100 ≤ a ≤ 1000 (17)

-10 ≤ b ≤ 10 (18)

0 ≤ c ≤ 20 (19)

With the usage of 10000 starting points, the message from solver stating “likely converged to an

global optima” and the knowledge that the objective function is convex and should be minimized,

it can be stated that the GRG-algorithm has found a global optimum [31]. The solution is as

followed: a = -37,2374949894347; b = 2,67449368825694*10
-8

; c = 9,65842295272406. Figure

3 compares the function of the predicted results with the actual ones:

Page | 18

Also it can be argued that the estimation is a very conservative one, as for n = 13 there is no y-

value there after several weeks of calculation time. With this result the computing time for n = 35

can be calculated as:

 (35
) [sec]

 (3 3 3 3 5 35) [sec]

 3 5 [sec] 53 5 [days]

Therefore, the usage of the branch and bound algorithm within The R Project as an everyday tool

to allocate routes is not feasible.

Figure 4: Comparison of the predicted and average runtime

Page | 19

4.2 Tabu Search using Open VRP

With none of our team members computer scientists, and not wishing to impose more requests

upon our generous and supportive teaching assistant we located an already compiled solution for

running an interesting heuristic approach for the Vehicle Routing Problem, Open-VRP. The

software’s author designed the implementation in LISP to be a framework that others could use

to implement any algorithm of their choosing. The project has shown some positive feedback,

mostly from students who appear to be utilizing it in similar endeavors for academic pursuits.

The author uses a tabu search implementation that uses first the Greedy-best insertion technique

to quickly locate a feasible solution. It then iterates through a very basic neighborhood structure

using a function titled “best-insertion.” The author notes that this minimalistic neighborhood

structure is “works pretty well in most times, but might not be strong enough in some cases to

overcome local optima.” [32] Recommendations to use multi-run, force additional iterations,

modify the tabu-tenure, or to design your own adaptive routines for dealing with apparently

stuck optimality have to be considered.

Open-VRP does implement the namesake tabu list of tabu moves, a table of elite neighborhoods

for faster computational comparison, and the aspiration feature noted as a means to clear best-yet

solutions from the tabu list.

4.3 Pilot data set

Data for this project is quite basic and was collected by one of our team members with contacts

from Nokia Siemens Networks. Our initial data set consisted of a set of latitude and longitude

coordinates detailing the exact locations of the 35 base transceiver stations servicing the northern

area of Tehran along with the location of the service depot, which operates as the dispatch point

Page | 20

for all upgrade crews. We were also given average time estimates for specific upgrades on

specific towers. We normalized this data to be in units of time equal to minutes. As a capacitated

VRP, with all requirements in time, we can schedule and plot our tours based on minutes-per-

truck equal to an 8-hour day, or 480 minutes per truck. This accounts for the travel time and the

time-to-upgrade each tower (see Appendix A). Data for this table was gathered with Google

Earth using the “Directions” functionality from each node to every other node. Only half of the

table was required to be filled out and the data mirrored, thus it is a symmetric problem (see sec.

2.1).

This data could be used by R but once we had investigated the Open-VRP tool further we

discovered that issues importing a TSPLIB95 [33] file that utilized a time or distance-based

matrix. To resolve this we massaged our data by converting latitude/longitude values to UTM,

which provided relative offsets, measured in meters for all coordinates. From here, we

normalized the values to the lowest common denominator for each east and north value and input

the normalized X, Y meter coordinates for the Cartesian straight-line distance calculation

provided by Open-VRP. This is sub-optimal but after significant trial and error, was the only

method we could produce using our pilot test results. Given that the distances are relatively short

in this pilot phase, the main concern is scheduling the proper tower assignment or capacity and

secondarily the efficiency of the vehicle routes; the Open-VRP solutions generated fulfilled these

criteria.

5 Analysis

After our initial implementations, we know enough to make a few recommendations about our

two options and how Nokia Siemens Network might utilize them in planning system upgrades

around the Tehran region.

Page | 21

5.1 Comparing criteria

As noted previously, we were looking for solutions that met several criteria: flexibility,

simplicity, accuracy and speed.

5.1.1 Flexibility

Flexibility-wise, Open-VRP has a lot of promise as it was initially designed as a framework for

solving many VRP types of scenarios. It is capable of handling two common files types for VRP

problem sets, it can operate on symmetric and asymmetric VRP problem, and can account for

simple VRP, capacitated VRP, time-window VRP, and capacitated time-window VRP. With

these myriad of options, it is possible to leverage the tool in quite a few ways and offers many

options in tuning the output. You can adjust tabu-tenure to your problem set, do multi-start runs,

and choose to iterate more if you are unhappy with a given solution. If Cartesian math is offered,

it also provides a nice plotting function to provide a graphical representation of the routed

solution.

Unfortunately, it also appears to have been a project without a following. Marc Kuo made some

significant progress and got the code to a stable release but few modifications have been made to

it since last year. The last commit against the code base was minor and 2 months ago; all other

commits were over a year ago. Compared to the branch and bound implementation by Dong-

Joon Lim, the Open-VRP solution has the potential to be more flexible, but its complexity belies

its potential power. With more time and effort, a solution based on R Project would likely be

more flexible, though that is outside the scope of our discussion and capabilities.

Page | 22

5.1.2 Simplicity

The Open-VRP solution is fairly simple. It took a little work to find a suitable Common LISP

environment and get the proper libraries installed but operating the software once all the pieces

were in place was not challenging. The use of branch and bound in R was simple, but without an

expert in the R language available, modifications will be difficult. With the current R code, you

feed the software the proper data inputs and it churns away until it provides an answer as a grid

of tours. Because there are many more options with the Open-VRP solution, and more pitfalls in

working out what format it can and can not accept, the R implementation is easier to work with

overall. The caveat to this lies in the fact that an expert was available who hand-coded the

implementation and assisted with its operation. It is also designed as a single-solution

implementation whereas Open-VRP was designed as a framework that additional algorithms can

be implemented and compared.

5.1.3 Accuracy

Accuracy of a simplex abd branch and bound model, if no errors are introduced, will produce the

global optimal solution. Because of this, accuracy cannot be exceeded and any heuristic or meta-

heuristic technique can only get lucky in finding a global optima.

Open-VRP on the other hand does not always provide the global optima. The provided results

are generally good but after running it many times, it has a tendency to require a multiple runs to

find some level of agreement on what a best solution might be. With a deeper investigation into

the platform, and if we could have figured out the multi-start feature, we expect that the average

runtime would have gone up but that we would have also seen an improvement on solutions with

less fiddling and re-running of our problem set.

Page | 23

5.1.4 Speed

The counterpoint of this is that the time to find an optimal solution in an NP-hard problem such

as the traveling salesman problem is that it can take an unrealistic time to compute this solution

(see sec. 4.1). In our case, the optimal solution is still being calculated and our model used to

estimate the time to completion would take us from Winter 2013 into late summer 2014 waiting

for an answer.

With the tabu search implementation in Open-VRP, answers are delivered quickly. The longest

run we experienced was just over 30 seconds with most runs lasting 1-5 seconds. With this kind

of speed, the requirement of being able to generate new route plans as needed is most certainly

fulfilled.

5.2 Implementation of pilot data

Given the implementation in R Project has a time-horizon of nearly a year, it is easy to describe

the results as: still running. This fails so miserably at one of our primary criteria of speed that it

is going to be impossible to recommend this solution for any organization needing route-

planning assistance unless the number of nodes is quite small. In our case, NSN is looking to

pilot a test routing solution that could be used for hundreds or possibly thousands of base

transceiver sites over time. Most likely they will work with smaller pockets at a time, prioritizing

their routes and re-running as the capacity calculations for time-to-upgrade are basic estimates,

but they do plan to utilize the tool to ascertain how many vehicles (crews) it will require to

compete segments of the project within a given timeframe.

Page | 24

After adjusting the Open-VRP

installation and providing it a workable

X, Y coordinate dataset, we were able

to run, re-run, and tune for a variety of

outputs. Since the solution is based on

an iterative approach with a random,

“Greedy” initial insertion; almost all

answer will be different. Again, with a

problem such as this, it is not

reasonable to search out the optimal

solution but rather locate a good

solution in a reasonable amount of

time. When using a Cartesian

coordinate system, the Open-VRP

package can also use a plotting

subsystem to output the results in a nice graphical representation as shown in Fig. 5.

Since each run is most likely going to provide different results, our experience showed that

running the tool several times and grabbing the best solution from the mix was the easiest course

of action. There are some batch tools to run the algorithm a number of times, but some bugs in

the application caused issues with this technique overwriting files from previous runs if the

results were generated faster than the file output could be written.

Fig. 5: Graphical output of proposed Open-

VRP solution

Page | 25

Final results were created by running the

Open-VRP package on our TSPLIB95 [33]

file (see Appendix C) until we received a

trend of outputs that trended lower than most.

We then picked from the lowest “fitness”–or

distance-traveled–output from these runs and

present this as our “good” solution for routing

vehicles for NSN for their pilot data test. In

playing with the various adjustments, a

slightly larger tabu-tenure (20 vs. the default

15) was used as this tended to run the

algorithm longer before reaching a local

optima, and in some cases breaking out of this

local optima and locating an improved output.

In our chosen final output the optimal answer

was reached on the 13
th

 iteration of a run

capped at 1000 iterations. The algorithm

continued to look for improvements in its neighborhood until it gave up because of the lack of

decrease in fitness at 74 iterations in. The Open-VRP package allows for further modification to

continue iterating to look for a better solution as well as disabling the stopping conditions but

results did not provide significant improvements and implementing these changes in the tool

were not well documented and somewhat elusive. Another nicety of the application is the

detailed log file that is output for each run. This provides insight into the operations of the

* (solve-prob etm540 (make-instance 'tabu-

search :iterations 1000 :tabu-tenure 20))

...

.

Stopping condition met.

No more iterations left.

Run took a total of 0 seconds.

Final solution of run with TABU-SEARCH

on ETM540 was found on iteration 987

Fitness: 169032.97

[0]: (0 22 14 0)

[1]: (0 13 28 24 12 20 0)

[2]: (0 4 33 26 0)

[3]: (0 1 27 0)

[4]: (0 23 0)

[5]: (0 11 0)

[6]: (0 32 8 7 0)

[7]: (0 10 18 0)

[8]: (0 31 17 0)

[9]: (0 6 30 0)

[10]: (0 35 25 3 0)

[11]: (0 5 15 0)

[12]: (0 34 29 0)

[13]: (0 9 16 2 0)

[14]: (0 21 19 0)

#<TABU-SEARCH {1004FCF243}>

Fig. 6: Best answer from cluster of runs to

ETM540 problem set

Page | 26

algorithm and can assist in tuning the available variables for increased performance. A truncated

copy including only the beginning and end of the run log of the final solution is shown in

Appendix B.

6 Conclusion

Initially we were interested in comparing the relative effectiveness of a heuristic technique to

that of an exact technique and we had hoped to achieve a solution providing the ability to do a

comparative analysis of these two solutions. Unfortunately we learned through our

implementation very specifically why this is such a large area of research in computer science

and combinatorial optimization: the problem sets quickly become so large and computationally

intensive that exact solutions are outside of the realm of solving within realistic time-horizons [1].

By utilizing a freely-available open source solution called Open-VRP, we were able to

experiment and provide a realistic set of vehicle routes for each upgrade crew that included a set

of towers to be upgraded, allowed enough time for each vehicle to service each tower within the

route within one single day, and minimized the distances traveled, though based on straight-line

distances and not a travel-time matrix. This solution details 14 specific routes that consistent of

one to five upgraded base transceiver stations per route. Nokia Siemens Networks can utilize this

information to plan their work crews to upgrade as many segments of the network as they have

resources available and know that the planned approach should minimize the distance traveled

and not exceed their crew capacities to service each location in a given day. As is inevitable in

real-world deployment scenarios, any adjustments or time-overages in the upgrade process can

easily be accounted for by modifying the list of remaining towers to be upgraded and re-running

the Open-VRP solver to generate new routes as needed within several minutes time.

Page | 27

With more time and resources, more advanced solver platforms or algorithms might be

introduced, stricter, more exact capacity rating systems and constraints for each vehicle might be

accounted for, or possibly even the integration of both upgrade duties and typical service calls

could be incorporated to more efficiently service, upgrade, and maintain the NSN cellular system

in Tehran, Iran.

7 Acknowledgements

First we would like to thank Dong-Joon Lim for his exceptional support in developing our

branch and bound model (see Appendix C) in The R Project for Statistical Computing. Without

his assistance we would not have realized the impact NP-hard solutions have on today’s

computing hardware. He also provided all the test case data for calculating runtime averages

across a random set of data to elucidate the time-to-compute model in section 4.1. Dong-Joon

also acted as a resource and advisor with our model preparation, review, and feedback

throughout. Thank you Dong-Joon.

Second we would like to thank Marc Kuo (or “mck-” on Github) for his excellent package Open-

VRP. His development allowed us to use a VRP solver implementation with real-world data

utilizing a basic tabu search model to come up with a reasonable solution for this report. Without

his freely available software, our team would have had to take a more theoretical approach and

the hands on experience with two implementations was a useful learning exercise.

Page | 28

8 References

[1] Fred Glover and Manuel Laguna, Tabu Search. Boston, MA: Kluwer Academic Publishers,

1997.

[2] B. F. Voigt, "Der Handlungsreisende, wie er sein soll und was er zu thun hat, um Aufträge

zu erhalten und (The Travelling Salesman, how he should be and what he should do to

obtain Commissions and be successful in his Affairs. By a veteran Travelling Salesman,

Ilmenau)," Von einem alten Commis-Voyageur, Ilmenau, 1831.

[3] Jan Karel Lenstra, A.H.G. Rinnooy Kan, and David B. Shmoys, "The traveling salesman

problem: a guided tour of combinatorial optimization.," vol. 3, 1985.

[4] Rainer E. Burkard, Vladamir G. Deῐneko, René van Dal, Jack A. A. van der Veen, and

Gerhard J. Woeginger, "Well-Solvable Special Cases of the Traveling Salesman Problem: A

Survey," SIAM Review, vol. 40, no. 3, pp. 496-546, 1998. [Online].

http://www.jstor.org/stable/2653230

[5] T. Grünert and S. Irnich, Optimierung im Transport, Band II: Wege und Touren. Aachen:

Shaker Verlag, 2005, vol. 2.

[6] R. S. Garfnikel, "Motivation and modeling," in The Traveling Salesman Problem: A Guided

Tour of Combinatorial Optimization. Chichester: Wiley, 1985, vol. 3, pp. 17-36.

[7] F. Gurski, I. Rothe, J. Rothe, and E. Wanke, "Exakte Algorithmen für schwere

Graphenprobleme".

[8] A. J. Hoffman and P. Wolfe, "History," in The traveling salesman problem: a guided tour of

combinatorial optimization. Chichester: Wiley, 1985, vol. 3, pp. 1-16.

[9] M. Gendreau, A. Hertz, and G. Laporte, "New Insertion and Postoptimization Procedures

for the Traveling Salesman Problem," Operations Research, vol. 40, no. 6, pp. 1086-1094,

November/December 1992.

[10] G. Pataki, "Teaching Integer Programming Formulations Using The Traveling Salesman

Problem," SIAM Review, vol. 45, no. 1, pp. 116-123, March 2003.

[11] NEO Networking and Emerging Optimization. [Online]. http://neo.lcc.uma.es/vrp/wp-

content/uploads/vrp.png

[12] G. B. Dantzig and J. H. Ramser, "The truck dispatching problem," Management Science,

vol. 6, no. 1, pp. 80-91, 1959.

[13] M. Desrochers, J. K. Lenstra, M. W. Savelsbergh, and F. Soumis, "Vehicle routing with

time windows: optimization and approximation," Vehicle routing: Methods and studies, vol.

16, pp. 65-84, 1988.

[14] Bruce L., Raghavan, Subramanian Golden and Edward A. Wasil, Eds., The Vehicle Routing

Problem, Latest advances and new challenges.: Springer, 2007, vol. 43.

[15] M. Desrochers, J. K. Lenstra, and M. W. Savelsbergh, "A Classification Scheme for Vehicle

Routing and Scheduling Problems," European Journal of Operations Research, vol. 46, pp.

322-332, 1990.

[16] M. M. Solomon and J. & Desrosiers, "Time Window Constrained Routing and Scheduling

Problems," Transportation Science, vol. 22, no. 1, pp. 1-13, 1988.

Page | 29

[17] M. Dror, G. Laporte, and P. Trudeau, "Vehicle Routing with Split Deliveries," Discrete

Applied Mathematics, vol. 50, pp. 239-254, 1994.

[18] Geir Hasle and Oddvar Kloster, Industrial vehicle routing. Heidelberg: Springer Berlin,

2007.

[19] A. G. Qureshi, E. Taniguchi, and Tadashi Yamada, "An exact solution approach for vehicle

routing and scheduling problems with soft time windows," Transportation Research Part E:

Logistics and Transportation Review, vol. 46.5, pp. 960-977, 2009.

[20] Laszlo Ladányi, Ted K. Ralphs, and Leslie E. Trotter Jr., "Branch, cut, and price: Sequential

and parallel," Computational combinatorial optimization, pp. 223-260, 2001.

[21] R. E. Gomory, "Outline of an algorithm for integer solutions to linear programs," Bulletin of

the American mathematical society, vol. 64, no. 5, pp. 275-278, 1958.

[22] Gilbert Laporte, "The vehicle routing problem: An overview of exact and approximate

algorithms," European Journal of Operational Research, vol. 59.3, pp. 345-358, 1992.

[23] S. Vajda, "An outline of linear programming," Journal of the Royal Statistical Society.

Series B (Methodological), pp. 165-172, 1955.

[24] Marshall L. Fisher and Ramchandran Jaikumar, "A Generalized Assignment Heuristic For

Vehicle Routing," Networks, vol. 11.2, pp. 109-124, 1981.

[25] Stefan Ropke, Heuristics and Exact Algorithms for Vehicle Routing Problems, 2005.

[26] Olli Bräysy and Michel Gendreau, "Genetic algorithms for the vehicle routing problem with

time windows," Arpakannus, vol. 1, pp. 33-38, 2001.

[27] Jean-Yves Potvin, "State-of-the art review—evolutionary algorithms for vehicle routing,"

INFORMS Journal on Computing, vol. 21.4, pp. 518-548, 2009.

[28] Jean-François Cordeau, Michel Gendreau, and Gilbert Laporte, "A tabu search heuristic for

periodic and multi-depot vehicle routing problems," Networks, vol. 30.2, pp. 105-119, 1997.

[29] Michel Gendreau, Alain Hertz, and Gilbert Laporte, "A tabu search heuristic for the vehicle

routing problem," Management science, vol. 40.10, pp. 1276-1290, 1994.

[30] Ross Ihaka and Robert Gentleman, "R: A language for data analysis and graphics," Journal

of computational and graphical statistics, vol. 5.3, pp. 299-314, 1996.

[31] Kenneth R. Baker, Optimization Modeling with Spreadsheets. Hoboken, NJ: Wiley, 2011.

[32] Mark Kuo. (2012) Open-VRP. [Online]. https://github.com/mck-/Open-VRP

[33] Gerhard Reinelt. (1995) Tsplib95.

[34] Johann Dréo. (2006, May) Wikimedia. [Online].

http://upload.wikimedia.org/wikipedia/commons/2/2a/Aco_TSP.svg

[35] Tolga Bektas, "The multiple traveling salesman problem: an overview of formulations and

solution procedures," Omega, vol. 34.3, pp. 209-219, 2006.

[36] Swfung8. (2011, April) Wikimedia. [Online]. http://en.wikipedia.org/wiki/File:Greedy-

search-path-example.gif

9 Appendices

9.1 Appendix A: VRP Data Matrix – Time from Location A to Location B

Table X.XX: Time Matrix calculated in minutes.
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Depot

1 0 6 7 13 10 6 16 19 20 7 9 11 16 12 5 15 5 5 31 15 19 7 15 9 15 16 13 11 14 6 21 13 10 15 12 1

2 6 0 8 10 6 11 17 19 20 7 13 14 12 7 12 18 6 3 28 13 17 2 16 13 12 13 8 6 11 8 20 13 13 12 8 3

3 7 8 0 14 10 12 14 16 17 11 8 12 14 14 14 16 7 6 27 14 19 9 12 10 14 16 15 13 15 10 17 10 11 13 12 5

4 13 10 14 0 6 12 14 16 16 9 12 14 12 10 12 17 6 3 24 17 15 7 13 13 12 12 16 13 13 15 17 10 14 12 5 11

5 10 6 10 6 0 13 14 16 17 11 12 14 10 8 14 18 8 5 25 13 11 5 13 15 10 7 8 6 6 12 17 10 15 5 5 7

6 6 11 12 12 13 0 13 19 18 11 7 7 20 16 7 11 9 9 31 14 24 11 16 6 20 21 18 16 19 11 18 14 6 20 16 6

7 16 17 14 14 14 13 0 7 5 18 8 7 19 18 19 8 16 13 19 5 24 15 7 10 18 21 22 20 20 19 6 12 8 18 17 14

8 19 19 16 16 16 19 7 0 8 22 17 18 21 21 25 17 20 16 17 9 20 18 9 19 20 20 24 22 22 22 9 13 17 16 19 17

9 20 20 17 16 17 18 5 8 0 22 14 13 21 21 23 14 19 16 20 9 22 18 11 16 21 22 25 23 23 23 7 16 14 20 20 18

10 7 7 11 9 11 11 18 22 22 0 14 15 17 11 13 19 9 8 34 18 21 7 20 14 16 18 8 10 15 2 26 18 14 16 14 4

11 9 13 8 12 12 7 8 17 14 14 0 7 14 13 11 12 9 9 25 9 22 11 8 6 13 19 20 18 18 13 15 7 5 13 12 8

12 11 14 12 14 14 7 7 18 13 15 7 0 18 19 14 6 13 13 26 9 24 14 11 4 18 21 21 19 20 14 13 12 2 17 16 9

13 16 12 14 12 10 20 19 21 21 17 14 18 0 13 23 27 17 14 29 17 8 13 22 24 8 4 21 12 7 18 13 12 2 17 16 13

14 12 7 14 10 8 16 18 21 21 11 13 19 13 0 17 24 12 10 32 17 16 5 20 18 13 13 7 5 9 13 24 17 19 13 12 9

15 5 12 14 12 14 7 19 25 23 13 11 14 23 17 0 19 9 9 35 20 24 11 19 13 20 21 18 16 20 11 24 17 19 13 12 6

16 15 18 16 17 18 11 8 17 14 19 12 6 27 24 19 0 15 15 26 13 28 16 10 7 21 25 25 23 24 18 26 17 14 19 16 13

17 5 6 7 6 8 9 16 20 19 9 9 13 17 12 9 15 0 5 31 15 19 6 15 9 15 12 13 19 14 8 12 15 7 21 20 3

18 5 3 6 3 5 9 13 16 16 8 9 13 14 10 9 15 5 0 26 12 15 5 15 10 10 12 11 8 11 7 22 14 10 15 12 3

19 31 28 27 24 25 31 19 17 20 34 25 26 29 32 35 26 31 26 0 20 28 28 23 29 30 28 33 31 30 33 19 12 11 10 7 14

20 15 13 14 17 13 14 5 9 9 18 9 9 17 17 20 13 15 12 20 0 23 14 4 12 17 20 21 19 19 19 20 27 26 26 29 14

21 19 17 19 15 11 24 24 20 22 21 22 24 8 16 24 28 19 15 28 23 0 15 21 24 10 12 17 14 10 20 8 6 9 17 16 16

22 7 2 9 7 5 11 15 18 18 7 11 14 13 5 11 16 6 5 28 14 15 0 14 13 10 12 6 4 9 8 20 20 24 10 14 4

23 15 16 12 13 13 16 7 9 11 20 8 11 22 20 19 10 15 15 23 4 21 14 0 11 17 20 21 19 21 18 21 14 14 10 9 13

24 9 13 10 13 15 6 10 19 16 14 6 4 24 18 13 7 9 10 29 12 24 13 11 0 21 6 19 17 21 12 13 13 3 20 17 7

25 15 12 14 12 10 20 18 20 21 16 13 18 8 13 20 21 15 10 30 17 10 10 17 21 0 6 14 11 6 18 13 13 3 20 17 13

26 16 13 16 12 7 21 21 20 22 18 19 21 4 13 21 25 12 12 28 20 12 12 20 6 6 0 11 9 5 15 13 13 3 20 17 10

27 13 8 15 16 8 18 22 24 25 8 20 21 21 7 18 25 13 11 33 21 17 6 21 19 14 11 0 7 12 9 20 17 22 7 10 10

28 11 6 13 13 6 16 20 22 23 10 18 19 12 5 16 23 19 8 31 19 14 4 19 17 11 9 7 0 6 13 25 18 20 13 13 9

29 14 11 15 13 6 19 20 22 23 15 18 20 7 9 20 24 14 11 30 19 10 9 21 21 6 5 12 6 0 16 22 16 21 5 11 11

30 6 8 10 15 12 11 19 22 23 2 13 14 18 13 11 18 8 7 33 19 20 8 18 12 18 15 9 13 16 0 25 16 13 17 14 5

31 21 20 17 17 17 18 6 9 7 26 15 13 13 24 24 26 12 22 19 20 8 20 21 13 13 13 20 25 22 25 0 13 14 17 17 20

32 13 13 10 10 10 14 12 13 16 18 7 12 12 17 17 17 15 14 12 27 6 20 14 13 13 13 17 18 16 16 13 0 15 16 15 11

33 10 13 11 14 15 6 8 17 14 14 5 2 2 19 19 14 7 10 11 26 9 24 14 3 3 3 22 20 21 13 14 15 0 16 15 8

34 15 12 13 12 5 20 18 16 20 16 13 17 17 13 13 19 21 15 10 26 17 10 10 20 20 20 7 13 5 17 17 16 16 0 6 13

35 12 8 12 5 5 16 17 19 20 14 12 16 16 12 12 16 20 12 7 29 16 14 9 17 17 17 10 13 11 14 17 15 15 6 0 9

Depot 1 3 5 11 7 6 14 17 18 4 8 9 13 9 6 13 3 3 14 14 16 4 13 7 13 10 10 9 11 5 20 11 8 13 9 0

9.2 Appendix B: ETM540.vrp file for problem setup

NAME: ETM540

BEST_KNOWN: 835.26

COMMENT: 835.260000

DIMENSION: 36

CAPACITY: 480

EDGE_WEIGHT_FORMAT: FUNCTION

EDGE_WEIGHT_TYPE: EXPLICIT

NODE_COORD_SECTION

1 5067 15784

2 3835 14521

3 5072 14200

4 3924 13644

5 2642 14088

6 6344 16390

7 9855 14882

8 10038 11829

9 11403 14070

10 3454 16331

11 6367 14665

12 7943 15920

13 0 11863

14 1247 15296

15 4902 17419

16 8938 16673

17 4541 15131

18 3984 14291

19 9011 0

20 8673 13764

21 730 10793

22 3401 14523

23 8594 12925

24 7213 16252

25 36 13024

26 860 11622

27 2227 16268

28 1722 13970

29 516 13581

30 4230 16606

31 10495 13434

32 7438 13265

33 7101 15583

34 2252 13686

35 4039 13210

36 4870 15598

DEMAND_SECTION

1 60

2 120

3 180

4 240

5 60

6 120

7 180

Page | 32

8 240

9 60

10 120

11 180

12 240

13 60

14 120

15 180

16 240

17 60

18 120

19 180

20 240

21 60

22 120

23 180

24 240

25 60

26 120

27 180

28 240

29 60

30 120

31 180

32 240

33 60

34 120

35 180

36 0

DEPOT_SECTION

1

-1

EOF

9.3 Appendix B: Open-VRP log file of best solution (truncated)

It is now 19:53:21 of Monday, 12/09/2013 (GMT-8)

Commencing run with Tabu Search on ETM540

--------------#<STANDARD-CLASS CVRP> object details:--------------

Slot: NAME Value: ETM540

Slot: DESC Value: Capacitated Vehicle Routing Problem

Slot: TO-DEPOT Value: T

Slot: DRAWER Value: #S(DRAWER

 :MIN-COORD 0

 :MAX-COORD 17419

 :X-POS 0

 :Y-POS 0

 :MAX-PIX 1000

 :LEGENDP T

 :LEGEND-X 100

 :LEGEND-Y 900

 :FILENAME /Users/jerrodt/Open-VRP/plots/ETM540.png

 :PLOTP T)

Slot: LOG-FILE Value: /Users/jerrodt/Open-VRP/run-logs/ETM540/ETM540.txt

Page | 33

Slot: LOG-MODE Value: 1

--------------#<STANDARD-CLASS TABU-SEARCH> object details:--------------

Slot: NAME Value: Tabu Search

Slot: DESC Value: A local search that escapes local optima by means of

declaring certain moves tabu.

Slot: BEST-SOL Value: NIL

Slot: BEST-FITNESS Value: NIL

Slot: BEST-ITERATION Value: 0

Slot: CURRENT-SOL Value: NIL

Slot: ITERATIONS Value: 1000

Slot: ANIMATEP Value: NIL

Slot: MOVE-TYPE Value: TS-BEST-INSERTION-MOVE

Slot: INIT-HEUR Value: GREEDY-BEST-INSERTION

Slot: ASPIRATIONP Value: T

Slot: ELITE-LISTP Value: T

Slot: TABU-LIST Value: NIL

Slot: TABU-TENURE Value: 20

Slot: TABU-PARAMETER-F Value: #<FUNCTION OPEN-VRP.ALGO::TS-PARS-N>

Slot: CANDIDATE-LIST Value: NIL

Slot: STOPPING-CONDITION Value: #<FUNCTION OPEN-VRP.ALGO::STOPPING-CONDITIONP>

Performing INSERTION-MOVE with Node 14 and Vehicle 0 and Index 1

Performing INSERTION-MOVE with Node 22 and Vehicle 0 and Index 1

Performing INSERTION-MOVE with Node 20 and Vehicle 1 and Index 1

Performing INSERTION-MOVE with Node 12 and Vehicle 1 and Index 1

Performing INSERTION-MOVE with Node 8 and Vehicle 1 and Index 3

Performing INSERTION-MOVE with Node 13 and Vehicle 1 and Index 1

Performing INSERTION-MOVE with Node 16 and Vehicle 1 and Index 1

Performing INSERTION-MOVE with Node 26 and Vehicle 2 and Index 1

Performing INSERTION-MOVE with Node 5 and Vehicle 2 and Index 1

Performing INSERTION-MOVE with Node 27 and Vehicle 3 and Index 1

Performing INSERTION-MOVE with Node 23 and Vehicle 4 and Index 1

Performing INSERTION-MOVE with Node 1 and Vehicle 3 and Index 1

Performing INSERTION-MOVE with Node 33 and Vehicle 4 and Index 1

Performing INSERTION-MOVE with Node 24 and Vehicle 2 and Index 3

Performing INSERTION-MOVE with Node 21 and Vehicle 5 and Index 1

Performing INSERTION-MOVE with Node 11 and Vehicle 5 and Index 1

Performing INSERTION-MOVE with Node 7 and Vehicle 6 and Index 1

Performing INSERTION-MOVE with Node 4 and Vehicle 6 and Index 1

Performing INSERTION-MOVE with Node 18 and Vehicle 7 and Index 1

Performing INSERTION-MOVE with Node 10 and Vehicle 7 and Index 1

Performing INSERTION-MOVE with Node 17 and Vehicle 8 and Index 1

Performing INSERTION-MOVE with Node 31 and Vehicle 8 and Index 1

Performing INSERTION-MOVE with Node 30 and Vehicle 9 and Index 1

Performing INSERTION-MOVE with Node 3 and Vehicle 10 and Index 1

Performing INSERTION-MOVE with Node 15 and Vehicle 11 and Index 1

Performing INSERTION-MOVE with Node 6 and Vehicle 9 and Index 1

Performing INSERTION-MOVE with Node 25 and Vehicle 10 and Index 1

Performing INSERTION-MOVE with Node 32 and Vehicle 11 and Index 1

Performing INSERTION-MOVE with Node 29 and Vehicle 12 and Index 1

Performing INSERTION-MOVE with Node 34 and Vehicle 12 and Index 1

Performing INSERTION-MOVE with Node 35 and Vehicle 10 and Index 1

Performing INSERTION-MOVE with Node 28 and Vehicle 6 and Index 2

Page | 34

Performing INSERTION-MOVE with Node 2 and Vehicle 13 and Index 1

Performing INSERTION-MOVE with Node 9 and Vehicle 13 and Index 1

Performing INSERTION-MOVE with Node 19 and Vehicle 14 and Index 1

Run took a total of 0 seconds.

Final solution of run with GREEDY-BEST-INSERTION on ETM540 was found on iteration 0

Fitness: 199848.77

[0]: (0 22 14 0)

[1]: (0 16 13 12 20 8 0)

[2]: (0 5 26 24 0)

[3]: (0 1 27 0)

[4]: (0 33 23 0)

[5]: (0 11 21 0)

[6]: (0 4 28 7 0)

[7]: (0 10 18 0)

[8]: (0 31 17 0)

[9]: (0 6 30 0)

[10]: (0 35 25 3 0)

[11]: (0 32 15 0)

[12]: (0 34 29 0)

[13]: (0 9 2 0)

[14]: (0 19 0)

Performing INSERTION-MOVE with Node 8 and Vehicle 14 and Index 1

Performing TS-BEST-INSERTION-MOVE with Node 8 and Vehicle 14 and Index NIL

Iterations to go: 999

Fitness: 193909.97

[0]: (0 22 14 0)

[1]: (0 16 13 12 20 0)

[2]: (0 5 26 24 0)

[3]: (0 1 27 0)

[4]: (0 33 23 0)

[5]: (0 11 21 0)

[6]: (0 4 28 7 0)

[7]: (0 10 18 0)

[8]: (0 31 17 0)

[9]: (0 6 30 0)

[10]: (0 35 25 3 0)

[11]: (0 32 15 0)

[12]: (0 34 29 0)

[13]: (0 9 2 0)

[14]: (0 8 19 0)

<SKIP TO END OF FILE>
Performing INSERTION-MOVE with Node 31 and Vehicle 8 and Index 1

Performing TS-BEST-INSERTION-MOVE with Node 31 and Vehicle 8 and Index NIL

Iterations to go: 926

Fitness: 169064.33

[0]: (0 22 14 0)

[1]: (0 13 28 24 12 20 0)

[2]: (0 4 33 26 0)

[3]: (0 35 1 27 0)

Page | 35

[4]: (0 23 0)

[5]: (0 11 32 0)

[6]: (0 8 7 0)

[7]: (0 10 18 0)

[8]: (0 31 17 0)

[9]: (0 6 30 0)

[10]: (0 25 3 0)

[11]: (0 5 15 0)

[12]: (0 29 34 0)

[13]: (0 9 16 2 0)

[14]: (0 21 19 0)

Stopping condition met.

Run took a total of 0 seconds.

Final solution of run with TABU-SEARCH on ETM540 was found on iteration 987

Fitness: 169032.97

[0]: (0 22 14 0)

[1]: (0 13 28 24 12 20 0)

[2]: (0 4 33 26 0)

[3]: (0 1 27 0)

[4]: (0 23 0)

[5]: (0 11 0)

[6]: (0 32 8 7 0)

[7]: (0 10 18 0)

[8]: (0 31 17 0)

[9]: (0 6 30 0)

[10]: (0 35 25 3 0)

[11]: (0 5 15 0)

[12]: (0 34 29 0)

[13]: (0 9 16 2 0)

[14]: (0 21 19 0)

9.4 Appendix C: R implementation of model from section 2.2

Author: Dong-Joon Lim, 2013

Dataset

dist<-matrix(c(0,1,1,1,1,1,0,1,2,1,1,1,0,1,2,1,2,1,0,2,1,1,2,2,0),nrow=5) # testbed1

dist<-matrix(c(0,1,1,1,1,3,0,1,2,1,1,1,0,1,2,1,2,3,0,2,1,1,2,2,0),nrow=5) # testbed2

source("http://dl.dropbox.com/u/12900679/Datasets/salesman.txt") # your data, be careful,

will take forever

Function

salesman<-function(dist,m){ #assume that first row and column is depot

 library(lpSolveAPI)

 n<-nrow(dist)

 for(i in 1:n){if(i==1){d<-dist[1,]}else{d <- cbind(d,dist[i,])}}

 dim(d)<-c(1,n^2)

 results.r<-matrix(rep(-1.0, n^2), nrow=n, ncol=n)

 results.u<-matrix(rep(-1.0, n), nrow=1, ncol=n)

Page | 36

 sm<-make.lp(0,(n^2+n))

 set.objfn(sm, c(d,rep(0,n)))

 for(i in 1:n){

 if(i==1){

 add.constraint(sm, c(rep(1,n),rep(0,n^2)),"=", m) #r1_sum=m

 add.constraint(sm, c(rep(c(1,rep(0,(n-1))),n),rep(0,n)),"=", m) #c1_sum=m

 add.constraint(sm, c(1,rep(0,n^2+n-1)),"=", 0) #x11=0

 add.constraint(sm, c(rep(0,n^2),1,rep(0,(n-1))),"=", 1) #u1=1

 }else{

 add.constraint(sm, c(rep(0,((i-1)*n)),rep(1,n),rep(0,n^2+n-n*i)),"=", 1) #rs_sum=1

 add.constraint(sm, c(rep(c(rep(0,(i-1)),1,rep(0,(n-i))),n),rep(0,n)),"=", 1)

#csum=1

 add.constraint(sm, c(rep(0,(n*(i-1)+i-1)),1,rep(0,((n^2+n)-(n*(i-1)+i)))),"=", 0)

#xii=0

 }

 for(j in 2:n){

 if(i==j){next}

 else if(i<j){add.constraint(sm, c(rep(0,n*(i-1)),rep(0,(j-1)),n,rep(0,n^2-n*(i-1)-

(j-1)-1),rep(0,(i-1)),1,rep(0,(j-i-1)),-1,rep(0,(n-j))),"<=", n-1)}

 else if(i>j){add.constraint(sm, c(rep(0,n*(i-1)),rep(0,(j-1)),n,rep(0,n^2-n*(i-1)-

(j-1)-1),rep(0,(j-1)),-1,rep(0,(i-j-1)),1,rep(0,(n-i))),"<=", n-1)}

 }

 }

 set.bounds (sm, lower = rep(0, n^2+n))

 set.type (sm,1:n^2,"binary")

 set.type (sm,(n^2+1):(n^2+n),"integer")

 solve.lpExtPtr (sm)

 for(i in 1:n){results.r[i,]<-get.variables(sm)[(n*(i-1)+1):((n*(i-1)+1)+n-1)]}

 results.u<-get.variables(sm)[(n^2+1):((n^2+1)+n-1)]

 list(r=results.r,u=results.u)

}

Run

salesman(dist,1)

salesman(x,1)

