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Abstract 

Electric Vehicles (EVs) have been introduced into the market for almost a century and are now gaining 

more attention due to regulations and environmental concerns. However EVs have not yet become 

mainstreamdue to theshort trip ranges, long charging times, high costs, and poor durability of batteries. 

In an effort to encourage consumers to purchase EVs, the government has been funding research to solve 

some of these problems. Specifically, government has been heavily investing in Research and 

Development (R&D) of EV battery technologies with a wide variety of battery chemistries. The battery 

technologies were evaluated using data mining to identify leading countries, key research organizations, 

and current technology emphasis for each R&D stage. In this study, a few technical characteristics of 

batteries were considered, including specific energy, specific power, and cost to forecast the technological 

progress in relation to the Department of Energy (DOE)goals for EVs. Due to the lack of required technical 

characteristics for battery technologies, alternative performance data for EVs were collected, including 

Miles Per Gallon equivalent (MPGe), acceleration, battery weight, and EV price. For this paper, Technology 

Forecasting Using Data Envelopment Analysis (TFDEA) was used to forecast future battery performance 

characteristics.The results were compared against the performance goals established by the DOE. This 

study showed that the current advancements in EV battery technologies would not meet the DOE 

requirement with respects to EV range, due to a low average Rate of Change (RoC). Therefore,a new 

technology must be developed that will increase the current rate of technological advancement.  
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1 Introduction 

Electric Vehicle (EV) battery research isincreasing as environmental concerns receive more political 

attention. The Internal Combustion Engine (ICE) has been the standard engine in most personal 

transportation vehicles for most of the world’s population for the last century. EVs are gaining popularity 

as more stringent regulations and cost incentives are being introduced by governments to reduce CO2 

emissions produced by the ICEs. Today, while most vehicle manufacturers have a stake in the EV market, 

the EV has not yet been accepted by the mainstream population as their vehicle of choice. The high cost, 

limited driving range, charging times and vehicle performance are some barriers adding to the reluctance 

of wide market adoption[1][2][3].  

EVs will remain cost prohibitive until there is a significant drop in battery prices. A reporter from the Wall 

Street Journal quoted Ford’s CEO as stating the price of the battery for an EV to be about one third the 

cost of the vehicle[4]. Many researchers have been working on battery technology to find solutions to the 

cost problem.  Researchers at Argonne labs have been challenged through a Department Of Energy (DOE) 

funded grant to develop a battery by 2014 with a maximum price of $3,400[5]. A content review of the 

EV and battery literature was performed to understand the cost concerns of batteries. Cost estimates 

available in the literature varied widely and relied on a wide range of different assumptions [6].  

Furthermore, the development of batteries is a strategic niche for a number of car manufacturers so 

secrecy is employed to keep detailed data confidential [6][7].  Therefore, there are few empirical studies 

attempting to forecast the research progress of this key component in relation to the cost goals required 

for broad market acceptance. This study will use a forecasting method to understand if the EV battery 

technology is on track to meet the targeted goals established by the Department of Energy (DOE) within 

the next 10 years.    

1.1 Electric Vehicles (EVs) 

EVs are not new.  In fact, in the early 1900s the ratio of EVs was almost double that of gasoline powered 

cars[8]. Wealthy individuals enjoyed the electric start and typically lived in town driving short distances 

on improved roads. Innovations in manufacturing with the assembly line reduced the cost barrier making 

vehicles feasible for the mass market. Further technology innovations such as the electric starter and 

improved roads helped to fuel the automotive industry. Consumers became increasingly concerned about 

short trip range, long charging times and poor durability of electric batteries.The ICE vehicles soon became 

the vehicle of choice because they performed better and cost less. Today, these concerns remain and 

must be solved for the consumer market to accept an EV as an ICE vehicle substitute. Government has 

recognized these concerns and the DOE has issued over $2 billion in grants to accelerate research 

efforts[9].Researchers have documented that by 2020 “more than half of new vehicle sales will likely be 

EV models”[8].  However, to meet this goal battery technology must improve while reducing the 

cost.Industry analysts estimate the cost of the Nissan Leaf battery pack at $18,000 in 2010 and $12,000 in 

2013[10]. While this shows a significant decrease over a three year period.DOE cost targets are specified 

in $/kWh. In 2010, the DOE estimated the cost of the EV battery to range between $700-$950/kWh[9] 

with a target of $300/kWh by 2015 and $150/kWh by 2020. In 2010, the Nissan battery was estimated to 
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cost $18,000 for a 24kWh lithium-ion battery[10]. Conversion of the Nissan battery cost into $/kWh 

calculates to $750/kWh. This figure falls at the bottom of the range reported by the DOE supporting the 

validity of the number. Using the cost goals established by the DOE for 2015 and 2020 this would translate 

to a cost estimate for the Nissan Leaf EV battery pack to be about $7,700 in 2015 and more than half that 

cost by 2020 as shown in Figure 1. 

Figure 1: Cost projections for Nissan Leaf EV battery[9] 

 

 Year DOE 

($/kWh) 

Leaf 

($/kWh) 

Battery 

($) 

2010 700-950 750 18,000 

2015 300-400   321 7714 

2020 150 150 3600 
 

 

In general, analysts were reporting the cost of the battery to be approximately 50% of the cost of the 

vehicle in 2010 and about 30% in 2012[4].By removing just the cost savings from the battery from the 

vehicle price this means a Leaf costing $36,000 in 2010 could cost $24,700 in 2015 without adjusting for 

inflation. The MSRP was listed at $28,800 in 2013 for this vehicle. Following the rule of thumb that the 

battery is about a third the cost of the vehicle, the Nissan battery would cost about $9600 as shown in the 

figure 1 graph.This example shows the 2020 goal may be difficult to achieve. While this theoretical case 

provides an interesting example, a more scientific method is derived to explore the trend with specific 

battery technologies. 

1.2 Battery Technologies 
The EV battery is used to power a controller which runs the electric motor. It contains two electrodes, a 

cathode and an anode. In general, a separator creates a barrier between the electrodes to prevent them 

from touching while allowing electrical charge to flow between them. Electrolyte allows the electric 

charge to flow between the cathode and anode. Researchers are aggressively exploring improvements in 

each of these technologies. A variety of chemistries are used by different battery developers to power EVs 

today. The literature was searched to determine differences between general types of battery chemistries 

in relation to common attributes. Table 1compares different battery chemistries with common attributes. 

 

Table 1: Comparison Between Battery Types[8][11][12][13][14] 

Attribute Lead Acid NiMH Li-Ion Molten 
Salt 

Metal-air 

DOE Cost 

Goals 
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Weight (kg) Poor Fair Good Fair   Good 

Volume (lit) Poor Good Good  Good Good 

Capacity/Energy (kWh) Poor Fair Good Fair Good  

Discharge Power (kW) Good Fair Good Good Fair 

Regen Power (kW) Poor Fair Good Good Good  

Cold-Temperature (kWh & kW) Good Fair Poor Poor Fair  

Shallow Cycle Life (number) Fair Good Good  Good Poor  

Deep Cycle Life (number) Poor Good Fair  Good  Poor 

Calendar Life (years) Poor Fair Fair Good   Poor 

Cost ($/kW or $/kWh) Good Poor Poor Good   Poor 

Safety- Abuse Tolerance Good Good Fair Poor Poor  

Maturity – Technology Good Good Fair Fair Poor  

Maturity – Manufacturing Good Fair Good   Good Fair 

1.2.1 Specific power and energy 

EV batteries are typically characterized by a power-to-weight ratio (specific power) andanenergy-to-

weight ratio (specific energy or energy density).The power-to-weight ratio, also referred to as specific 

power, is a common attribute to measure actual performance of an engine or performance of a vehicle. 

This measure can be inconsistently quoted because manufacturers will often use the peak value and 

researchers may quote the actual value as measured in a laboratory or field test. The tradeoff for batteries 

is between specific energy and specific power[11].If specific power reaches high values, the specific 

energy starts to decrease. A balance therefore needs to be maintained between specific energy and 

specific power. Since the acceleration of a vehicle is associated with specific power, and the range of a 

vehicle is associated with specific energy, the tradeoff is also between acceleration and range.While 

batteries are present in HEVs, Plug-in HEVs (PHEVs), as well as full EVs,each have their own requirements. 

For a HEV, the requirement of the battery is not necessarily to add range to the vehicle but rather to aid 

in the acceleration of the vehicle. Therefore the specific energy will be low, while the specific power will 

be high. For an EV, the requirements are both, since the battery is aiding in acceleration and range. 

However if the specific power is too high, then the range will be low so a balance needs to be reached.  

Additionally, cooling requirements for larger batteries in EVs will contribute to the weight of the battery 

more than smaller batteries in HEVs. 

 

1.2.2 Battery Research and Development (R&D) 

The Office of Energy Efficiency and Renewable Energy (EERE) has been chartered to advance  “the 

development of batteries and other energy storage devices to enable a large market penetration of hybrid 

and electric vehicles”[15].  In 2010, they released funding with established performance targets as 

reflected in Table 1.  
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Table 1: DOE Battery Performance Targets 

Energy Storage Goals HEV (2010) PHEV (2015) EV (2020) 

Equivalent Elect Range (miles) N/A 10-40 300 

Discharge Pulse Power (kW) 25 28-50 80 

Regen Pulse Power (10 sec) (kW) 20 25-30 40 

Recharge Rate (kW) N/A 1.4-2.8 5-10 

Available Energy (kWh) 0.3 3.5-11.6 30-40 

Cycle Life (cycles) 3000 3,000 – 5,000 deep 

discharge 

1500 deep 

discharge 

Calendar Life (year) 15 10+ 10 

Maximum System Weight (kg) 40 60-120 133 

Operating Temp Range (ºC) -30 to +52 -30 to 52 -40 to 85 

 

Research funded a wide variety of battery chemistries. Through a public bid process, twelve proposals 

were selected for evaluation for grants.  Upon results of this work, four laboratory facilities were 

established with the help of DOE grants.Table 2reflects the laboratory facilities established as a result of 

this funding research. 

Table 2: Battery Development Contracts 

Laboratory DOE Grant Facility Description 

Argonne National Lab $8.8 M Battery Prototype Cell Fabrication, Materials Production 

Scale-up, Post-test Analysis 

INL: Idaho National Lab $5.0 M High-energy Battery Test Facility 

Sandia National Labs $4.2 M Battery Abuse Testing Lab 

NREL $2.0 M Battery Design and Thermal Testing Facility 

 

Sandia labs actively identified major battery research areas as materials, the power cell, the system and 

commercialization.  A synthesis of the final reports from each of the labs listed in Table 2 was 

performed[16][17][18]. The challenges and goals appear to have been met for HEVs. Specifically, the 

battery in the Toyota Prius, a nickel metal hydride (NiMH)chemistry, obtains a reported 50 Miles Per 

Gallon equivalent (MPGe). The outcome of nearly a decade of funding resulted in R&D efforts identifying 

two broad categories of battery technologies best suited for EVs: lithium-ion (Li-Ion) and nickel-metal 

hydride (NiMH). The Li-ion chemistries differ in the fact that they represent a family of battery chemistries 

each with strengths and weaknesses.  

1.2.3 Battery Applications (Electric Vehicles) 

The results of a literature review on the commercialization of these battery technologies show that they 

are both used and present in the market.  A popular NiMH battery is the Varta and a popular Li-Ion battery 
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is made by Johnston Controls. Table 3shows the current battery components used in certain 

commercialEVs.  

Table 3: Batteries used in EVsand HEVs of selected car manufacturers [8] 

Company Country Vehicle model Battery technology 

GM USA  Chevy-Volt 

Saturn Vue Hybrid 

Li-ion 

NiMH 

Ford USA Escape, Fusion, MKZ HEV 

Escape PHEV 

NiMH 

Li-ion 

Toyota Japan Prius, Lexus NiMH 

Honda Japan Civic, Insight NiMH 

Hyundai South Korea Sonata Lithium polymer 

Chrysler USA Chrysler 200CEV  Li-ion 

BMW Germany X6 

Mini E(2012) 

NiMH 

Li-ion 

BYD China E6 Li-ion 

Daimler Benz Germany ML450, S400 

Smart EV (2010) 

NiMH 

Li-ion 

Mitsubishi Japan iMiEV (2010) Li-ion 

Nissan Japan Altima 

Leaf EV (2010) 

NiMH 

Li-ion 

Tesla USA Roadster (2009) Li-ion 

Think Norway Think EV Li-ion, Sodium/Metal Chloride 

 

As a result of the literature review and synthesis of the national lab results we elected to focus our study 

on lithium ion (li-ion) and nickel metal hydride (NiMH) EV batteries.  In general, the advantage to Li-ion 

batteries is that they can store more energy per mass and volume than the NiMH because lithium is a 

lightweight metal and because the properties result in a cell voltage between 3.3V -4.3V compared to 

about 1.2V for NiMH. 

1.2.4 Battery Technical Characteristics 

Important technical characteristics of batteries used for EVs were identified. The two main characteristics 

identified were specific energy and specific power. Specific energy is important because it translates into 

the range an electric vehicle can travel on a single charge. Specific power is important because it 

translatesintothe acceleration of an electric vehicle. The following is the list and description of the 

characteristics identified: 

1. Capacity: This is defined as the total Watt-hours (Wh) that can be discharged from a fully charged 

battery. Mathematically, the formula used to determinethis value is as follows (Ah: Ampere-hour) : 

Equation used for Capacity  (Wh) = Rated Ah Capacity X Rated Battery Voltage 
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2. Cost:This is the cost per kilo Watt hour ($/kWh) for the battery.The following equation calculates the 

cost using the battery capacity: 

Equation for total cost ($/kWh) = battery cost ($)/ battery capacity (kWh) 

A study released by the USABC [19] has determined that battery technology must reach approximately 

$200 - $300/kWh to make EVs commercially viable. The cost models consider materials, packaging 

efficiencies, manufacturing processes, economies of scale and other factors which are beyond the 

scope of this study. 

3. Specific Energy (Energy Density): This is how much energy a battery can store per unit mass.  This 

measure is important because it helps to measure the range and weight impact of the vehicle 

performance. The units for specific energy is typically Watt-hours per kilogram (Wh/kg). Where 

necessary, specific energy can be calculated using the following equation: 

Equation used to calculate Specific Energy (Wh/kg) = batterycapacity (Wh) / battery mass (kg). 

Research shows the practical limit for Li-ion technology to be about 300 Wh/kg[19].  

4. Specific Power: This is the maximum available power per unit mass. 

Equation used to calculate Specific Power (W/kg) = battery rated peak power (W) / battery mass (kg). 

5. Cycle Life:This is the number of discharge-charge cycles the battery can handle before it fails to meet 

specific performance criteria. The actual operating life of a battery is affected by temperature, 

charge/discharge rates that results in user variation. 

1.2.5 Battery Cost Forecasting 

There are three primary cost models used for analyzing battery costs:  the United States Advanced Battery 

Consortium (USABC) model, the Argonne model and the TIAX model[11]. Each of these cost models 

analyzes process criteria for manufacturing and producing a battery for commercialization. The USABC 

costs specific battery designs after cell performance is validated. The Argonne model uses a manufacturing 

optimization model tied to a volume production and sales model.  The TIAX model is used to identify 

factors with the highest cost impact in the manufacturing and distribution process. While each of these 

models is important to the technology transfer and manufacturing process, none of them forecasts what 

the cost is likely to be based on forecasting methods. However, they help to identify a common set of 

criteria. 

 

1.3 Technology Forecasting Methods 

1.3.1 Technology Forecasting using Data Envelopment Analysis (TFDEA) 

Technology Forecasting using Data Envelopment Analysis is the forecasting method used for in this 

paper.  
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“Technology Forecasting Using Data Envelopment Analysis (TFDEA) was introduced in 2001 [20] as an 

extension of Data Envelopment Analysis (DEA) used in operation research methods. TFDEA is a powerful 

tool for technology forecasting, risk identification, new product development (NPD) product planning, and 

early evaluation of disruptive technology”. This is because it “offers effective means to determine 

technological capability over time without the burden of fixed a-priori weighting schemes”[21].  The basic 

process of TFDEA is first to determine the scope of the forecast, then define the product, followed by 

defining the characteristics of the state-of-the-art (SOA), then determining the model, collecting the data, 

analyzing the technology progress and finally examining the results [22]. One fundamental concept for 

TFDEA is being SOA technology, which indicates a technology’s superiority over the others for the time 

being that the analysis is performed. If a technology is SOA, its efficiency score is assigned as 1, by 

considering the historical levels of performance. Subsequent efficiency scores are then assigned for each 

of the remaining technologies based on the preceding SOA technology[20]. 

 

1.3.2 Regression 

Although the method is not included as means of forecasting in the final paper, it was employed to 

further analyze and make sense of the results of the TFDEA findings. 

Regression analysis is one of the most used techniques for analyzing multi factor data. Its broad appeal 

and usefulness result from the conceptually logical process of using an equation to express the 

relationship between a variable of interest (the response) and a set of related predictor variables. 

 Martino (1993) [Miii] explains that “extrapolation(regression) is used to project progress beyond the 

upper limit of the current technical approach, which growth curves are not suited for this purpose. 

For a single technical factor (Performance) we use: y= a+bt, where y is performance, and a and b are 

coefficients of the regression model. 

For multiple technical factors we use: y = a+b1x1+b2x2+b3x3+..., where y is the year of a technology or 

product and x1, x2,x3 are the technical parameters influencing overall performance, therefore year of the 

product. Here, b1,b2,b3 are the coefficients of the multiple regression model. 

The general process followed for regression analysis is first to identify what available data best represents 

the technology of interest, followed by collecting the data, exploring the data and identifying patterns and 

relationships of interest, creating the regression model, verifying the model, and finally testing the model 

using validation data.“ 

 

2 Methodology 

Figure  illustrates the methodology that was followed for this study. This first step of the methodology 

was to understand the different types of technologies that exist and the societal context in which they are 

being developed, by using data mining. Once there was a good understanding of the environment of these 

technologies, relevant data was collected that could best explain the technology advancements over time. 

The data was then analyzed, and the TFDEA inputs and outputs were chosen from this datathat could best 
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explain the technologies. The results of the TFDEA model were then analyzed, and if required new data 

was collected or the model was updated. Based on the results, a conclusion was made and possible 

implications were mentioned from the advancements of this technology. 

 

 

3 Technology Evaluation 

3.1 Data Mining 
Martino [23] describes the association between the different R&D stages and typical sources of 

information, as shown in Table 4. The first four sources were used in order to evaluate the current status 

of EV battery technologies. The databases used for each of these stages are also illustrated in Table 4. The 

information gathered from the data mining process was used to create a Technology Delivery System 

(TDS), representing the societal context in which the technology is being developed. 

Table 4: Typical source of R&D stage information[23] 

R&D Stage Typical Source Database 

Basic Research Science Citation Index Web of Science 

Applied Research Engineering Index Compendex/INSPEC 

Development Patents USPTO, JPO, EPO, WIPO 

 
Technology 
Evaluation 

Data Collection 

Data Analysis 

Create TFDEA 
Model 

Analyze and 
Interpret Results 

Implications and 
Conclusion 

Data 
Mining 

Figure 2: Research Methodology 
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Application Newspaper Abstracts Daily LexisNexis 

Social Impacts Business and Popular Press - 

 

3.1.1 Search Methodology 

Keywords were identified during the literature review for each EVbattery technology and a Boolean search 

query was created, asshown in Table 5.The battery type was used as the keyword in the article and 

patenttitles, while electric vehicle was used as the keyword in the entire article. The idea was to capture 

articles and patents mainly focusing on the respective technologies by focusing on the titles of the articles 

and patents. Each of the databases mentioned above were searched using the Boolean search query. 

Table 5: Boolean Search Strings 

Battery Technology Boolean SearchQuery (All under Title of document) 

Lead-acid TTL:((batter*) AND ((lead acid) OR (Pb acid)))AND(electric* vehicle) 

NiMH TTL:((batter*) AND ((NiMH) OR (Nickel Metal Hydride))) AND(electric* vehicle) 

Li-Ion TTL:((batter*) AND ((Li ion) OR (Lithium Ion))) AND(electric* vehicle) 

Molten Salt TTL:((batter*) AND ((ZEBRA) OR (NaNiCl)OR (Sodium Nickel Chloride) OR (NaS) 

OR (Sodium Sulphur) OR (LiS) OR (Lithium Sulphur) OR (Molten Salt))) 

AND(electric* vehicle) 

Metal Air TTL:((batter*) AND ((Li air) OR (Lithium air)OR(Al air) OR (Aluminum air)OR(Zn 

air) OR (Zinc air)OR(Fe air) OR (Iron air)OR (Silicon air) OR (Metal air))) 

AND(electric* vehicle) 

3.1.2 Growth Rates 

Figure 1 illustrates the Share of Total Articles or Patents versus the Compound Annual Growth Rate (CAGR) 

for each EV battery technology under each R&D stage, between 2000 and 2012.The share of total articles 

or patents is calculated by adding all of the articles or patents up from 2000 until 2012, and calculating 

the percentage that belongs to each technology. Lithium-ion has the highest CAGR under each category 

except for basic research. Metal-air has the highest CAGR for basic research, however with a relatively 

small share of the total scientific articles. Due to the very high theoretical specific energy of some metal-

air battery technologies, it is understandable why there would beinterest in this technology.The lead-acid 

battery technology hasone of the lowest CAGR's for each stage, which is expected due to its low specific 

energy and phasing out of the technology. Finally, no relevant patents were identified for the molten salt 

battery technology associated with electric vehicles, however excluding electric vehicle from the search 

query resulted in over 300 patents. The limited application of these batteries to electric vehicles is likely 

due totheir high operating temperatures. 
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Figure 1: Share of Articles (2000 - 2012) vs. Compound Annual Growth Rate (2000 - 2012) 

 

3.1.3 Leading Countries (Basic and Applied Research) 

Table 6illustrates the top 3 countries for each EV battery technology identified from the Web of Science 

and INSPEC databases. The USA and China were identified in majority of the top 3 countries. The large 

investments in battery technologies by the USA, South Korea, Japan, and China [24] in Research and 

Development is a possible explanation for these findings. The USA is the top country in all sections except 

for applied research in NiMH and lithium-ion battery technologies. 

Table 6: Top 3 Countries per Technology (Basic and Applied Research) 

Battery 

Technology 

Basic Research Applied Research 

Lead-Acid USA (35%), England (9%), Germany (8%) USA (29%), UK (10%), China (9%) 

NiMH USA (28%), Japan (26%), China (11%) China (42%), USA (30%), Japan (15%) 

Li-ion USA (31%), China (25%), South Korea 

(12%) 

China (34%), USA (29%), Japan (10%) 

Molten Salt USA (26%), England (13%), China (13%) USA (27%), Germany (19%), UK (16%) 

Metal-air USA (56%), South Korea (18%), China (9%) USA (39%), Israel (18%), France (12%) 
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3.1.4 Key Research Organizations (Basic and Applied Research) 

For basic research, key organizations were identifiedusing the highest number of publications from the 

search results.For applied research, the relationship between organizations were evaluated using Social 

Network Analysis (SNA), due to the higher number of articles identified. The purpose of using SNA is to 

identify organizations that are influential in specific areas of research, and which organizations are 

collaborating with one another. A social network consists of nodes (in this case research organizations) 

and edges connecting these nodes together. If two organizations collaborated on a specific article then 

they are connected by an edge. The three most basic centrality measurements are [25]: 

1. Degree Centrality - The number of direct connections to a node. The higher the number of 

connections, the higher the number of collaborations between the specific node (organization) 

and other nodes (organizations), 

2. Closeness Centrality - The distance from a specific node to all other nodes. The closer a 

organization is to all other organizations, the easier it is for that node to monitor what is 

happening in the network. This value is only meaningful for a connected network,  

3. Betweenness Centrality - The number of shortest paths between two nodes that a specific node 

resides on. The more organizations that depend on a specific organization for connections, the 

more powerful that organization is. 

Table 7 illustrates the top organizations associated with basic and applied research. Research 

organizations with the highest degree centrality together with the highest betweenness centrality were 

selected. The intention was to find organizations that collaborate with the most other organizations, and 

who are critical in connecting organizations together. Due to the low connectivity of the networks, the 

closeness centrality was not meaningful.The organizations with the highest publications are also listed in 

Table 7. 

 

Table 7: Top Organizations (Basic and Applied Research) 

Battery Technology Research Organizations 

Li-ion  

(Basic Research) 

Pub: Department of Energy (US),Argonne National Labs (US),Beijing Institute of 

Technology (CN), University of Chicago (US). 

Li-ion 

 (Applied Research) 

Deg/Bet: Beijing Institute of Technology (CN), Peking University (CN), 

University of Michigan (US), SK Energy Institute of Technology (KR), 

Pub: Beijing Institute of Technology (CN), Korea Advance Institute of Science 

and Technology (KR), Argonne National Labs (US). 

Metal-air  

(Basic Research) 

Pub: Department of Energy (US),Ulsan National University of Science 

Technology (KR), Georgia Institute of Technology (US), Argonne National Labs 

(US), 
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NiMH 

 (Applied Research) 

*Pub: Ovonic Battery Company (US), Beijing Gen Res Institute for Non-Ferrous 

Metals (CN), Electro Energy Inc. (US)  

*The highest degree centrality measurements were 1; therefore all betweenness centralities were 0.  

3.1.5 Key Organizations (Development) 

The top assignees (organizations) were identified from the patents for each technology, and are shown in 

Table 8. The organizations were identified online and it was verified whether their current focus of 

research and development was on the associated technologies. As an example, Exide Technologies is one 

of the world's largest producers of lead-acid batteries, and Ovonic Battery Company develops and markets 

NiMH battery packs for Hybrid Electric Vehicles (HEVs). Additionally, in 2010 Japan and South Korea held 

an 80% share of global production of advanced Li-ion batteries, which aligns with the fact that almost all 

top assignees are from Japan [26].   

Table 8: Top Organizations (Development) 

Battery 

Technology 

Organizations (Assignees) 

Lead-Acid Exide Technologies (US), Matsushita Electric Industrial1 (JP), GS Yuasa Corp. (JP), 

Panasonic Corp. (JP), Shin Kobe Electric Machinery Co. (JP), Johnson Controls Inc. 

(US). 

NiMH Ovonic Battery Co. (US), Chevron (US), Matsushita Electric Industrial+ (JP), Toyota 

Motor Corp. (JP), Ceramatec Inc. (US), Sanyo Electric Co. Ltd. (JP). 

Li-ion Hitachi Ltd. (JP), Toyota Motor Co. (JP), Sony Corp. (JP), Nissan Motors (JP), GM 

Global Technology Operations (US). 

Molten Salt * 

Metal-air Electric Fuel Ltd. (IL),Reveo Inc.(US), Tesla Motors (US), Revolt Tech Ltd. (NO), 

Nanotek Instruments Inc. (US). 

+ Now Panasonic Corporation *No relevant patents were identified 

 

3.2 Technology Delivery System (TDS) 
Based on the information identified from the data mining process, a Technology Delivery System (TDS), 

as described by Roper et al. [27],was created.Figure 3 illustrates the TDS for EV battery technologies. The 

leading countries, key research organizations, and current technology emphasis were all identified from 

the previous data mining results. Government funding for research and development for the USA, China, 

Japan, and South Koreawas identified from literature, as well as the positive and negative influences that 

are promoting or hindering the development and application of the technology. The purpose of creating 

the TDS is twofold. One reason was to gain a further understanding, beyond the literature, of the 
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environment of the technology. The second reason was to identify the current technology emphasis for 

each R&D stage, in order to recognize technologies that could potentially disrupt the current EV market. 
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Figure 2: EV Battery Technology Delivery System (TDS) 
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3.3 Technology Framework 
Figure 4illustrates the technology framework. The technical performance relates to the battery 

technology, while the functional performance relates to the application, EVs. Each material used in the 

battery technologies has a theoretical specific energy which is the limitation for that material. 

Additionally,  for safety requirements, the temperature and voltage need to be limited below a certain 

threshold for safety and practicality reasons. The intention of this paper is to forecast battery 

technologies, as marked in the figure. 

 

 

4 Data Collection and Analysis 

There were several limitations to this study in terms of data collection.Srinivasan [11]mentions that the 

tradeoff for battery technologies is between specific energy (Wh/kg) and specific power (W/kg). Higher 

values of specific power result in a reduction in specific energy. Since range is associated with specific 

energy and acceleration is associated with specific power, there is also a tradeoff between range and 

acceleration. There was difficulty collecting specific power and accurate costs for EV batteries, however 
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acceleration and EV cost data were easier to obtain. All the data collected for 26 EVs is illustrated in Table 

9.  

Table 9: Data Collected 

Technical Performance 
Battery Technology  

Functional Performance 
Electric Vehicles  

Specific Energy (Wh/kg)  Release Date  

Battery Weight (kg)  Miles Per Gallon equivalent (MPGe) 

Total Battery Pack Voltage (V)  Ideal Range (miles)  

Battery Ampere Hours (Ah)  Rated Motor Power (kW)  

Battery Type  Recharge Time (h)  

Battery Energy Capacity (kWh)  Motor Torque (Nm)  

 Top Speed (mph)  

 2013 Price ($)  

 Weight (kg)  

 Acceleration (s)  

 

 

5 Technology Forecasting using Data Envelopment Analysis (TFDEA) 

5.1 Input and Output Selection 
The initial intention for the TFDEA model was to use the battery weight(kg) and price($) as inputs and 

battery energycapacity (kWh) and battery peak power(W) as outputs.The reason for these specific 

parameters was due to all literature measuring the improvements in battery technologies by specific 

power, specific energy, and price. As mentioned above, battery peak power and accurate battery price 

data could not be obtained; therefore acceleration and EV price data were selected instead. Since 

acceleration is associated with battery peak power, it was seen as an acceptable 

replacement.Additionally, since a large fraction of the EV price is associated with the battery price, this 

was also seen as an acceptable replacement. However, both acceleration and EV price data take into 

account other factors of the EV and therefore this is not a completely accurate representation of the 

battery. This was however the only option available with the data collected. 

Since acceleration is a performance characteristic of the EV, it was decided to use another performance 

characteristic in place of battery energy capacity, namely Miles Per Gallon equivalent (MPGe). By doing 

so, the same characteristics of the EV are taken into account by both outputs. One MPGe is approximately 
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0.0292 times the range of the EV in miles divided by the battery energycapacity in kWh. Therefore MPGe 

takes the range of the EV into account, for a specificbattery energy capacity (kWh). 

Battery weight was seen as an important technical characteristic to include in the model, since it is 

included in both specific power and specific energy. An improvement in the performance of a battery is 

measured by these values increasing. Since specific energy is equal to battery energy capacity divided by 

battery weight, Figure 4 shows that the improvement in specific energy over time is not due to increasing 

battery energy capacity, but rather a reduction in the weight of the battery. 

 

Figure 4: Decreasing Battery Weight over Time 

5.2 Model 
The final TFDEA model selected is illustrated in Figure 6. The initial idea was to include the EV price as an 

input, but the intention of the study was to forecast the improvement in the performance of the battery 

and price over time.Since an output-orientated model was selected, the output was maximized for the 

given input, battery weight.The question that the model would answer was therefore;for a given battery’s 

weight what improvements would you see in the price, MPGe, and acceleration? It was assumed that the 

focus on EV battery technologies would be to increase the range and acceleration of the EV while 

maintaining the same battery weight.  
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5.3 Results 
The frontier year for the TFDEA model was selected by using 30 percent of the data for validation. The 

frontier year chosen was 2012.5 (June 2012) and the resulting forecast is shown in Figure 6. The Mean 

Absolute Deviation (MAD) for the forecast was 0.9296 years, with aaverage Rate of Change (RoC) was 

1.03029. Only 5 out of 8 EV batteries forecasted, sincethe other 3 batteries did not have an efficiency 

greater than 1. 

 

Figure 6: TFDEA Result for 2012.5 Frontier Year 
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Table 10 lists the forecasted results using different frontier years. The purpose of changing the frontier 

year and observing the resultswas to determine the impact of the first Tesla S battery released which had 

a energy capacity that far exceeded the other batteries. The impact of this battery can be seen by the 

increase in the MAD from 2012 to 2012.25, and an increase in the number of vehicles forecasted. It should 

also be noted that there were always vehicles that we not forecasted, which could possibly be due to the 

inputs and outputs selected for the TFDEA model, or because of the data collected. 

Table 10: TFDEA Results with Different Frontier Years 

Frontier 

Year 

Training 

Data Count 

Validation 

Data Count 
MAD 

Percentage Vehicles 

Forecast 
Rate of Change (RoC) 

2012  14 12 1.5366 6/12 = 50%  1.03225  

2012.25  17 9 1.8120 6/9 = 66.67%  1.03101  

2012.5  18 8 0.9296  5/8 = 62.5%  1.03029  

2012.75  20 6 0.9685  4/6 = 66.67%  1.03072  

2013  24 2 1.2618 2/2 = 100%  1.02983  

 

6 Results Interpretation and Analysis 
Due to the large investments in battery technologies and specifically EV battery technologies, a RoC of 

approximately 3% per year does not seem correct.  However, by observing changes in the inputs and 

outputs of the TFDEA model over the 16 year period of available data, there does not seem to be any 

major improvements.To gain a better understanding on the progress of developments in the battery 

technologies, it would possibly be more beneficial to gather data on technology advancements from 

earlier R&D stages. As was determined from the data mining results, there is still major focus on the 

lithium-ion technology in all stages of R&D. The real advancements in this technology may still come, and 

therefore will not be captured in theRoC determined from the TFDEA model. Additionally, if any disruptive 

technology was introduced (i.e. metal-air), then again this RoC value will no longer be relevant.  

Table 11 lists the 2013 frontier year forecast results for the two EV batteries released in 2013. It can be 

noted that the Chevy Spark forecasted just under 2 years ahead of the actual release date. This specific 

EV has a lower price, higher MPGe, good acceleration, and low battery weight compared to other EVs. In 

order to determine future characteristics of these EVs, the outputs were multiplied yearly by the average 

RoC, to determine the 2020 values shown in Table 12. The actual range for each EV was calculated by 

using the MPGe equation previously mentioned, with the current energy capacity of the EV's battery. The 

resulting range is far below the goal of DOE of 300 miles, which is basically due to the very low average 

RoC. This tells us that if current incremental advancements continue then the DOE goals cannot be met 

unless a new disruptive technology is introduced. 
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Table 11: 2013 Frontier Year EV Forecasts 

Vehicle  Release Date Efficiency at Release  Efficiency at Frontier  Forecasted Date  

Nissan Leaf  2013.304 1.0000000 1.027331 2013.921 

Chevy Spark  2013.419 1.0000000 1.070432 2015.326  

 

 

Table 12: 2020 Forecasted Performance 

Vehicle  MPGe Acceleration  Price_2013  Actual Range*  

Nissan Leaf  141.27  8.05 s  $23,444.27  99 miles  

Chevy Spark  146.19 6.2 s $22,471.91 91 miles  

 

 

7 Conclusion 

Data mining is a very useful tool for gaining a further understanding of the environment in which a 

technology exists beyond what is available only in literature. Key organizations together with the current 

technology emphasis for each R&D stage was easily identified from articles, patents, and newspaper 

abstracts. Combining these results with the TDS can help to determine whether any potential technologies 

may enter the market in the near or distant future, and who will be involved with these developments. 

Based on the data mining results in this study, focus in the basic research stage is on metal-air battery 

technologies. This technology could possibly replace the current lithium-ion batteries due to its high 

specific energy, however there may be quite a few years before it is used in EVs due to its early stage of 

development. By using the data mining results, it was therefore possible to identify what could possibly 

change the relevancy of the TFDEA forecast. 

Forecasted results using the average RoCdoes not take into account the introduction of some metal-air 

batteries as disruptive technology.The dataset only included EVs with incremental advancements in 

lithium-ion batteries.An increase of approximately 3 percent per year in performance improvements does 

not seem to align with all the investment in place for improving the technology, however this value isvery 

close to a previous study on Hybrid Electric Vehicles (HEVs), where the RoC was 1.03 [28].Based on the 

2020 forecast that used the average RoC, the range will be far below the goal of DOE. To possibly get a 

better understanding of the actual advancements in the technology, it may be beneficial to look at earlier 

stages of R&D. 

 

8 Recommendations and Future Work 

In order to obtain a better technology progress timeline, the DOE should do more work in terms of 
understanding the current situation of EV batteries. With that in mind, there is need for future work 
based on Gap analysis to help identify the gaps between the current situation and the future state that 
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is desired, along with the tasks that need to be completed to close this gap. In the Future work, more 
emphasis should be put in future candidates technologies as there is currently a gap in technology that 
researchers think can be filled using Metal-air batteries. Some of these future candidates technologies 
primary concern is the high operating temperatures, which are the cause for safety. The DOE should 
invest in this problem by funding more R&D for its fast resolution. Also, future work should include more 
input from experts such as engineers in the EV battery field in the if possible in order to gain more 
valuable information in the matter. Above all, more work should be done so that any chosen technology 
is up to date with safety and environment requirements.  

8.1 Limitations 
The following is a list of limitations for this study: 

 Parameters used in the TFDEA model take into account characteristics of EVs other than that of 

the battery. Specific energy, specific power, price, temperature, etc., for each battery would be 

the preferred parameters, 

 Data mining for lithium-ion batteries should be broken down into the different chemistries 

available, 

 Safety factors should be included in the forecast since it can limit the overall progress of the 

technology, 

 Battery performance data and criteria can vary depending upon many factors, such as vehicle size, 

weight, body shape and the driving habit of the driver. The assumptions are not commonly 

published, 

 Data was difficult to obtain due to the confidentially of companies regarding this information. 

Therefore, this study was limited to battery technologies that have already been released into the 

market. There are batteries that can possibly meet the DOE requirements, however it is not 

currently in the marker and therefore was not taken into account in the forecasts. 

 

8.2 Future Work 
 

The following is a list of future work that can be conducted to improve and extend this study: 

• More data should be gathered that is specific for the battery only and a more specific TFDEA 

model should be created, 

• Due to the large range of lithium-ion batteries, the data mining work should be extended to all 

different chemistries that are available, 

• Potential disruptive technologies should be discussed with industry experts and incorporate into 

the forecasts, 

• Alternative forecasting methods should be used and compared with the results obtained in this 

study.  
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Appendix A: Data 

Product Make 
Model 

Year 
Release 

Date 

Battery 

Weight (kg) 

Acceleration 

0-60 MPH 
MPGe 

2013 Price  

($) 

RAV4 Toyota 1997 1/1/1997 550 18 72 61114.84 

GM EV1 GM 1999 1/1/1999 481 8 37 47662.45 

Hyper Mini Nissan 1999 1/1/1999 267 30 75 51260.96 

Altra Nissan 2000 1/1/2000 365 15.5 85 69168.68 

fortwo 1st gen Mercedes 2007 1/1/2007 110 30 87 35690.97 

Tesla Roadster Tesla Motors 2008 2/1/2008 450 3.7 119 118235.8 

Mini MiniE BMW 2009 6/1/2009 259 8.5 98 54430.24 

iOn Peugeot 2010 1/1/2010 200 15.9 105 42630.48 

C-Zero Citreon 2010 1/1/2010 200 15.9 105 53872.08 

Fluence Z.E. Renault 2010 1/1/2010 250 12.5 105 37486.29 

fortwo 2nd gen. Mercedes 2011 9/17/2010 163 6.5 87 17650.48 

Leaf Nissan 2011 12/10/2010 290 10 99 36785.68 

i-Miev 

Mitsubishi 

Motors 2012 10/17/2011 246 9 112 32652.54 

Active E BMW 2011 12/2/2011 276 8.5 102 62659.21 

Model S (85 kW-

hr) Tesla 2012 2/27/2012 500 5.4 89 81275.32 

CODA Sedan CODA 2012 2/27/2012 408 9.6 73 37891.18 

Focus Electric Ford 2013 3/5/2012 327 9.5 105 39200 

Fit EV Honda 2013 6/15/2012 224 8.4 118 36625 

RAV4 EV Gen2 Toyota 2012 9/7/2012 455 18 76 50657.21 

Scion iQ EV Toyota 2013 9/29/2012 219 14 121 45000 

fortwo 3rd gen. Mercedes 2013 10/22/2012 178 13 107 25750 

ZOE Renault 2012 12/1/2012 290 13 90 27719.05 

Model S 

(60 kW-hr) Tesla 2013 12/4/2012 353 5.9 95 69900 

500e Fiat 2013 12/20/2012 261 9 116 33630 

Leaf Nissan 2013 4/22/2013 273 9.9 115 28800 

Spark Chevy 2014 6/3/2013 270 7.6 119 27500 
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Appendix B: Results 

Table 13: 2012.5 Frontier Year Forecast 

Vehicle Release Date Efficiency at Release 
Efficiency at 

Frontier 
Forecasted Date 

RAV4 EV 2nd Gen 2012.685 0.6596 0.6596 - 

Scion iQ EV 2012.745 1.0000 1.0374 2013.730 

Fortwo 3rd Gen 2012.808 1.0000 1.0596 2014.439 

ZOE 2012.918 0.8666 0.8724 - 

Model S (60 kW-hr) 2012.926 0.8112 0.8112 - 

500e 2012.970 1.0000 1.0037 2012.629 

Leaf 2013.304 1.0000 1.0329 2013.586 

Spark 2013.419 1.0000 1.0720 2014.829 

 


