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ABSTRACT 

 
The objective of this paper is to introduce the concept of Bayesian causal mapping which is build from 
causal maps (CMs). CMs provide a rich representation of ideas, through the modeling of complex 
structures --representing the chain of arguments-- as networks. However, CMs is not easy to define and 
the magnitude of the effect is difficult to express in numbers. Hence, Bayesian causal maps can be used 
to make inferences in CMs. 

 
Index Terms— Bayesian Causal Mapping, Causal Maps, Network. 
 

1.  INTRODUCTION  

 
In a real-world situation, decision maker(s) utilize the available information for making analysis and 
reaching decisions. The process of data analysis and decision making can be considered as a prediction 
process. Liu [1] mentions that in general there are two types of tasks in this process, which require 
different approaches: (1) classification which is concerned with deciding the nature of a particular 
system given the features, which usually produces labeled data; (2) causal prediction which is 
concerned with the effect of the changes in some features to some other features in the system. 

The later process --causal prediction-- is more related to causal inference which is concerned with the 
degree of change of feature(s) in the prediction process. This change would directly or indirectly alter 
some of the features in the data. Hence, Causal Maps (CMs) considered being applicable for this 
purpose [2].  According to Nadkarni [3], since CMs represent domain knowledge more descriptively 
than other models such as regression or structural equations, they are more useful as a decision tool. 

A Bayesian networks (BNs) is a graphical model that encodes relationships among variables in the 
system. Spigehalter et.al [4] argue that BNs has several advantages for data analysis: (1) BNs readily 
handles situations where some data entries are missing, (2) BNs can be used to model causal 
relationships, and hence can be used to gain understanding about a problem domain and to predict the 
consequences of intervention, and, (3) BNs is an ideal representation for combining prior knowledge 
(which often comes in causal form) and data since the model has both causal and probabilistic 
semantics. 

BNs can be constructed through two different approaches -- data-based approach and knowledge-based 
approach [5]. The data-based approaches use conditional independence between variables of interest of 
Bayes nets to induce models from data. The knowledge-based approach uses expert’s judgement in 
constructing Bayesian networks. The knowledge-based approach is especially useful in situations where 
domain knowledge is crucial and availability of data is scarce. 

2.  CAUSAL MAPS (CMs) 

In order to understand the effect of the change(s), decision maker(s) must have some mechanisms that 
can discover the cause and effect relations from the data set.  Causal Maps (CMs) is widely known to 
approach such a problem. Eden et al. [2] defines CMs as a ``directed graph characterized by a 
hierarchical structure which is most often in the form of a means/end graph”. In the last decades, CMs 
have been widely used to construct a framework and represent major factors, knowledge and conditions 
that influence decision making process [5,6]. 

Causal relationships can be either positive or negative, as specified by a ’+’, respectively a ’-’, sign on 
the arrow connecting two variables. The variables that cause a change are called cause variables and the 
ones that undergo the effect of the change are called effect variables [7]. 



 

CMs provide a rich representation of ideas, through the modeling of complex structures --representing 
the chain of arguments-- as networks [2,3]. Often times the last stage of intervention process is to 
identify and agree to a set of potential strategic options. In some cases, the preferred direction may 
emerge naturally from a process of negotiation; in others further, more or-less formal, analysis to 
evaluate the options and to understand their impacts on the goals could be helpful [8]. CMs can provide 
us to look at the problem more extensively than other decision tools which consider causal relations, 
such as regression. CM has been widely used in international relations, administrative science, political 
science, sociology, policy analysis, organizational behavior and management [1-3,5,8-10]. 

One major concern that needs to be addressed in CMs is that CMs are not easy to define and the 
magnitude of the effect is difficult to express in numbers. In general, CMs are constructed by gathering 
information from experts. These experts are more likely subjectively express themselves in qualitative 
rather than quantitative terms [7] . Kosko [11] introduced the concept of Fuzzy CMs (FCMs) to 
overcome the problem. FCM represents the concepts linguistically with an associated fuzzy set. FCM is 
a signed directed graph that allows feedback and employs concepts (nodes) and weighted edges 
between concepts [12]. The degree of relationship between concepts in an FCM is either a number in [0; 
1] or [-1; 1], or a linguistic term, such as ’often’, ’extremely’, ’some’, etc [7].  

3.  BAYESIAN NETWORKS (BNs) 
 
3.1 Definition 

In the eighteenth century, Bayes’ Theorem is developed by Thomas Bayes (1702—1761); since then the 
theory had a major effect on statistical inferences. The probability of a cause is inferred by Bayes 
Theorem when effect of cause is observed. The theorem was expanded in time. It has been used as a 
cause and effect diagram since the end of twentieth century [13]. Some of the advantages in using 
Bayesian Networks (BNs) are: (1) BNs can handle incomplete data sets (2) BNs focus on causal 
relationship and then facilitate the combination of background knowledge and experimental data in a 
way that the process can avoid over fitting problem [3,4]. 

BNs is a model in which events are connected to each other with probabilities. This model can be 
anything; for example, economic reasons, vehicle parts, ecosystem etc.., which can be modeled with 
Bayes. If the probabilities of events which affect each other are known exactly, the achievements are 
closer to the true results [14]. 

BNs is a directed acyclic graph (DAG) which means there are no cycles. In other word, BNs is a 
probabilistic graphical model that restricts the graph to be directed and acyclic. Other models such as 
Markov random fields (MRFs) have no such restrictions [15,16]. If there is a link between A and B 
(A�B) we say that B is a child of A and A is a parent of B [17,18]. In BNs, a link from node A to node 
B does not always imply causality. It implies a direct influence of A over B and the probability of B is 
conditioned on the value of A [19,20].  

3.2 Conditional Probabilities in BNs 

The direction of the arrows in BNs can be explained with causality as long as arrows do not cause an 
endless loop. The advantage in comparison to other statistical models such like regression is that 
casualty can   supply missing information and details as well as bringing the priorities and key factors 
into focus [10]. Besides, the network is constructed in such a way that in the beginning all factors have 
the same certainties.  

If A and B are the occurrences of two factors Bayes rule is defined as follows: 

P(B|A) =
P(A|B) ∗ P(B)

P(A)
 



 

Where, P(A) gives the probability of the occurrence of factor A and P(A⁄B) is the probability of the 
occurrence of A when B event is occurred. Hence, the link from node A to node B means that factor A 
has a direct affect on factor B. Furthermore, the probability of B depends on the probability of A [21]. 
Each node of the network is annotated with a conditional probability distribution (CPD) that represents 
P(Xi | Pa(X1)), where Pa(Xi) denotes the parents of Xi. The pair (G, CPD) encodes the joint distribution 
P(X1, … Xn). A unique joint probability distribution over X from G is factorized as: 

 

BNs helps us to observe whole structure of factor interactions from a graph. This is the way marginal 
and conditional probabilities of the factors can be computed by marginalizing over the joint [22]. 
 
3.3 Probabilistic inferences 

Probabilistic inferences about variables in the model can be drawn once a BNs is constructed. The 
conditionals given in a BNs representation specify the prior joint distribution of the variables. If we 
observe (or learn about) the values of some variables, then such observations can be represented by 
tables where we assign 1 for the observed values and 0 for the unobserved values. Then the product of 
all tables (conditionals and observations) gives the (un-normalized) posterior joint distribution of the 
variables. Thus, the joint distribution of variables changes each time we learn new information about the 
variables. 
A simple system such as in Figure 1 illustrate the concept of probabilistic inferences in BNs. If there is 
an arc pointing from A to B, we say A is a parent of B. For each variable, we need to specify a table of 
conditional probability distributions, one for each configuration of states of its parents. Figure 1 shows 
these tables of conditional distributions -- P(A), P(B|A), P(C) and P(D|B,C). 

 
 
 

 

 

 

 

 

 

Figure 1 Graphic Representation of BNs 

A fundamental assumption of a BNs is that when we multiply the conditionals for each variable, we get 
the joint probability distribution for all variables in the network. For Figure 1 we make assumption that: 
P(A,B,C,D) = P(A)*P(B|A)*P(C)*P(D|B,C). 

 
One can read these conditional independence assumptions directly from the BNs graph as follows. 
Suppose we pick a sequence of the variables such that for all directed arcs in the network, the variable 
at the tail of each arc precedes the variable at the head of the arc in the sequence. Since the directed 
graph is acyclic, there always exists such a sequence. In Figure 1, one such sequence is A B C D. Then, 
the conditional independence assumptions can be stated as follows. For each variable in the sequence, 
we are assuming that it is conditionally independent of its predecessors in the sequence given its 
parents. The essential point here is that missing arcs (from a node to its successors in the sequence) 
signify conditional independence assumptions. Thus the lack of an arc from A to C indicates that C is 
independent of A; the lack of an arc from B to C indicates that B is independent of C; and the lack of an 
arc from A to D indicates that D is conditionally independent of A given B and C [3]. 
 

A 

B C 
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4.   TRANSFORMING CMS  TO  BNS 

Both BNs and CMs are causal models that represent cause - effect beliefs of  experts. However, there 
are some differences in the two approaches to modeling that need to be addressed if we are to transform 
CMs to BNs. These differences are discussed in the following paragraphs.  

4.1  Conditional independencies 

Pearl [23] states that a network model can be either a dependence map (D-map) or an independence 
map (I-map). In a D-map, an arrow between two variables in the model implies that the two variables 
are related. However, a lack of an arrow between variables does not necessarily imply independence 
between the two variables. An I-map, on the other hand, implies that concepts found to be separated are 
indeed conditionally independent, given other variables. Hence, CMs is a D-map since CMs is a 
directed graph that depicts causality between variables and also in CMs an arrow between two variables 
implies dependence. However, the absence of an arrow between two variables in CMs does not imply a 
lack of dependence. There is a possibility that the absence of the arrow resulted from the lack of 
articulation of the expert’s judegement. It does not necesary imply that the expert believes that the 
variables to be independent [5]. 

BNs, on the other hand, is an I-map. Hence, an absence of arrow from a variable to its child indicates 
conditional independence between the variables. Thus, when we want to transform CMs to BNs, it is 
important to ensure that the lack of links between the concepts in the causal maps implies independence 
and the presence of links between concepts implies dependence [3][5]. 

4.2 Reasoning underlying cause–effect relations 

It is believed that from a logic or reasoning process standpoint, individuals perceive cause - effect 
relationships based on two types of reasoning: deductive and abductive [3]. A reasoning is called 
deductive if we reason from causes to effects. Abductive reasoning, on the other hand, happen  when we 
reason from effects to causes.  

A distinction between deductive and abductive reasoning behind the causal linkages is essential to 
establish accurate directions of linkages in CMs. The emphasis in deriving CMs should be on the causal 
theory underlying the causal statements rather than the language used [8][3]. 

4.3  Direct Vs. Indirect Relations 

In CMs a direct link between two variables does not guarantee a direct relationship between the two 

variables. It just implies a relation between the two variables that can be either direct or indirect. This 

distinction is important to identify conditional independencies in the CMs [3][5][8]. Figure 2 ilustrates 

the distinction of direct and indirect relationship and how a lack of distinction affects conditional 

independence assumptions in a CMs. 

 
                Original CMs                      Bayesian CMs          
                

 
 
 
 
 
 
 

Figure 2 Direct Vs. Indirect Relations 
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In Figure 2 on the Original CMs, both A and B affect C while in the Bayesian CMs, there is no linkage 
between A and C, implying that A affect C strictly through B. If we have complete information of B, 
any additional information of A will be irrelevant in making inferences about C. 
 
4.4 Circular loop and reciprocal influences are not permitted in BNs 

As explained in the previous paragraph, CMs is directed graphs that characterized by an acyclic 
structure. However, circular relations or causal loops destroy the hierarchical form of a graph. Circular 
relations in the CMs violate the acyclic graphical structure required in BNs. It is therefore essential to 
eliminate circular relations to make CMs compatible with BNs. Causal loops can exist for two reasons. 
First, they may be coding mistakes that need to be corrected. Second, they may represent dynamic 
relations between variables across multiple time frames [2-5,8,24]. 
 
5. CONSTRUCTING BAYESIAN CAUSAL MAPS 
 
A procedure to construct Bayesian causal maps can be summarized into 4 steps [3][5]: 

1. Data elicitation 

2. Derivation of CMs 

3. Modification of CMs to construct Bayesian causal maps 

4. Derivation of the parameters of Bayesian causal maps 

 

Data-based or knowledge-based approaches or a combination can be used for data elicitation purpose. 
Hence, literature review and/or expert’s opinion are used to determine the variables of interest for 
constructing the original CMs. Based on the elicitate data, the second step is to construct an original 
CMs. In the third step, the CMs of the expert is modified-- using the approaches of transforming CMs to 
BNs as explained in the above paragraphs which include: conditional independencies, reasoning 
underlying the link between concepts, distinction between direct and indirect relations, and eliminating 
circular relations -- to eliminate biases that result from the use of textual analysis and to make the 
structure of the CMs compatible with BNs. In the final step, the parameters of the Bayesian causal maps 
are derived using probability-encoding techniques [3]. 

In step three--modification of CMs to construct Bayesian causal maps--two most widely used methods 
are structured interviews and adjacency matrices [3,8,13]. In structured interviews, the experts are 
provided a list of paired concepts as well as different alternative specifications of the relation between 
the concepts in the original map. The experts are then instructed to choose an alternative to specify the 
direct relation between the pair of concepts. Adjacency matrices, on the other hand, experts are 
provided the concepts in the form of an adjacency matrix, where the rows represent causes and columns 
represent effects. The experts are asked to enter ‘0’(no relation), ‘ +1 ’ (positive relation), or ‘-1’ 
(negative relation) in each cell to specify the relation between two concepts in the matrix. These two 
structured methods help in removing the four modeling biases relating to the construction of Bayesian 
causal maps. 

For the last step, once the structure of the Bayesian causal maps is constructed, numerical parameters of 
this modified structure need to be assessed so that the propagation algorithms in the Bayesian network 
can be used to make inferences [5][13]. For this purpose, data-based (historical data) and knowledge-
based approaches (expert’s opinion) can be utilized to get the parameter (prior and conditional 
probabilities of the variables of interest). 
 
  



 

6. A CASE STUDY: CLEAN ENERGY INVESTMENT [25] 

This section describes the construction of Bayesian causal map for a specific case study in clean energy 

investment [25]. First, the paper illustrates how starting from a CMs, then constructed the qualitative 

structure of a Bayesian causal map. Additional information -- collected from experts to address the 

modeling issues discussed in Section 4.1 as well as to derive the numerical parameters of the Bayesian 

causal map -- was also presented here. Second, Bayesian network software is also introduced to draw 

probabilistic inferences in a Bayesian causal map. 

 

6.1 Decision Context 

The decision faced for the presented case study here is whether decision maker(s) should invest in the 

nuclear energy or other renewable energy resources in regards to so many variables affecting the 

decision option. The role of the system analyst was to analyze the decision and suggest a 
recommendation. 

6.2 Procedure for constructing a Bayesian causal map 

6.2.1 Step 1: Data Elicitation 

Through literature review and expert’s validation, the authors observed that there are twenty-nine 

decision driving forces covering ecological, economical, technological and social  variables. These 

factors are eliminated to eleven factors by a cognitive map study. 

 

6.2.2. Step 2: Derivation of CMs 

Adjacency matrix --as explained in Section 5-- is presented to the experts to specify the relation 

between two concepts in the matrix. By taking the mode of the expert’s responses. The complete 

adjacency matrix is presented in Table 1. This process resulted in the original of CMs as shown in 
Figure 3. 

Table 1 Interrelation of Energy Investment Criteria. 
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Renewable 
Energy 

Investments 
0 -1 0 -1 1 -1 0 0 0 1 -1 

Nuclear Energy 
Investments 

-1 0 0 1 -1 -1 0 0 1 1 -1 

Primary Energy 
Consumption 

1 1 0 1 1 1 1 0 1 1 1 

Primary Energy 
Import 

1 1 1 0 1 1 0 0 1 0 1 

Renewable 
Energy 

Production 
1 -1 0 -1 0 -1 1 1 1 1 -1 

Fossil Fuel 
Production 

-1 0 1 1 -1 0 1 1 1 1 1 

GDP per Capita 1 1 1 1 1 1 0 1 1 1 -1 

Population 1 1 1 1 1 1 -1 0 1 1 1 

Urbanization 1 1 1 1 1 1 1 1 0 1 0 

Industrialization 1 1 1 1 1 1 1 1 1 0 1 

Greenhouse 
Emission 

1 1 0 -1 1 -1 -1 -1 0 -1 0 

 
 



 

 

 

Figure 3 Original CMs 

 

6.2.3. Step 3: Modification of original CMs 

Utilizing approaches as explained in Section 4 when we want to convert the CMs into BNs--by looking 

at four basic requirements: conditional independencies; reasoning underlying the link between concepts; 

distinction between direct and indirect relations; and eliminating circular relations--, the orginal CMs 

then converted into BNs. The final result of this processes is shown in Figure 4. 

 

 

Figure 4 Modified CMs 

 



 

6.3.4. Step 4: parameters Assessment 

In this step, the parameters of the Bayesian Causal Map --which consist of marginal probabilities and 

conditional probabilities-- were assessed using discrete scale of 0-10. 

 

6.4 Validating the Bayes net Model 

A graphical software package, Netica [14] is utilized to make probabilistic inferences using sum 
propagation. The sum propagation computes the marginal probabilities of all the model variables and 
updates the marginals with all additional evidence received about other variables [3,5,13]. In our case 
study, we can evaluate each energy investment alternatives under different scenarios. 

The scenarios were defined in consultation between the authors and the experts, and they represent 
situations in which there are unambiguous prescriptions for energy investment decision in the energy 
literature. 

One example of those scenarios is presented here to demonstrates how probabilistic inferences is drawn 
from the model by utilizing Netica. Đn Figure 4 of the modified CMs, suppose that two nodes, 
population and industrialization are predicted to be at their highest states, what will happen to 
greenhouse emission and energy import when the decision maker(s) decided to invest whether in 
nuclear energy or other renewable energy resources? Table 2 summarized the prior and posterior 
probabilities for all variables. 

Table 2 Prior and Posterior Marginal Probabilities under Different Scenarios 

With Nuclear Investment

GDP low 10 0

medium 60 0

high 30 100

Popula tion low 28.5 28.5

medium 43 43

high 28.5 28.5

Urbaniza tion low 50 50

high 50 50

Industria l i zation low 50 0

high 50 100

Primary Energy Consumption low 34.6 19.6

medium 25.8 10.7

high 39.6 69.6

Renewa ble Energy Production low 44.8 73.5

medium 8.63 3.55

high 46.5 23

Fos s i l  Fuel  Production low 43.7 47.5

medium 11.6 4.83

high 44.8 47.7

Energy Import low 50 42.5

high 50 57.5

Greenhouse Emission low 50.5 46.9

high 49.5 53.1

*Scena rio 1:  GDP a nd Industria l iza tion i s  at its  highest s ta tes

51.1

48.9

57.6
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6.48
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90

36.3
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0
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19.6

10.8

69.6

0

100

28.5

43

28.5

50

With Renewable Energy Investment

Posterior Marginal on Scenario 1*
Variables States Prior

0

 

It is noticed from Table 2 that once we exposed our scenario to the original/initialized Bayesian causal 
maps, sum propagation method will compute the posterior probabilities of the nodes/variables of 
interest so we can compare the result to the prior probabilities. In this case study, it is noticed that our 
scenario with the nuclear energy investment will result in the increase of both greenhouse emission and 
energy import--these 2 variables are affected by more variables compared to other variables as shown in 
Figure 4--, a result that obviously not in favor for the decision maker(s). While the same scenario 
running with renewable energy will result in lower energy import and greenhouse emission. The same 
approach can be used with different scenarios to find the most favorable policy for the decision 
maker(s). 



 

7. SUMMARY AND CONCLUSĐON 

Most of the focus in CMs has been in its use for knowledge representation [3]. This study enables 
decision-makers to use causal maps for decision making by converting the map into Bayesian causal 
maps. Once a Bayesian network is constructed, it can be used to make probability inferences about the 
variables in the model. The modified map was validated qualitatively, through expert’s consensus, and 
quantitavely through examining the posterior probabilities of decision variables under different 
scenarios. BNs is quite an effective method to conclude the plans which have complex structure.  

Bayesian causal maps provide a framework for representing the uncertainty of variables in the map as 
well as the effect of variables. Bayesian causal maps combine the strengths of causal maps and 
Bayesian networks and reduce the limitations of both. Using concepts from the literature on causal 
modeling and logic [8,13,23], Bayesian causal maps clarify the cause - effect relations depicted in the 
causal maps. They depict dependence between variables based on causal mapping approach (D-map) as 
well as a lack of dependence between variables based on the Bayesian network approach (I-map) 
[3,5,8,11,13,23]. 
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