

 ETM OFFICE USE ONLY
Report No.:
Type:
Note:

PORTLAND STATE UNIVERSITY

How Large or Virtualized
Teams Affect Agile

Processes
ETM-545 Team 1, Final Project

Dr. Anderson

Fall 2009

Neil Runde

Opinderjit Bhella

Dinesh Reddy

Maher Almasri

Faisal Alfayez

Srilaltha Kothapally

Abstract

The paper demonstrates the trend taking place in the software industry of organizations adopting agile

processes while compensating for virtualized teams. Through research, we discovered that success in

agile methodology is heavily based on face-to-face communication with small functional teams that are

collocated—bigger non-collocation teams provided diminishing returns on agile philosophy. In other

words, the bigger the team and the further apart you are, the more you need to start documenting and

more documentation means less agile.

Keywords: agile, software development, face-to-face communication, collocated, virtual teams, SDLC

Introduction

As high-tech markets are battling a “civilized war [1],” R&D executives are seeking creativity and

innovation in international design teams in hopes to access dispersed knowledge and skills [2] [3]. While

these strategies are essential for business success, they do create new challenges for project managers:

how to manage these “virtual teams.” In parallel, many organizations are embracing adaptive or agile

software methods in reaction to highly dynamic market forces and platform environment changes. This

paper will demonstrate that these trends may be in conflict.

This paper is organized by defining key terms describing end points on a spectrum of software

methodologies by using industry recognized characteristics. This paper will use literature review to gather

data on problems that are inherent in both large and geographically dispersed teams.

Lastly, this paper will show that agile methods rely more on high-band width communications then

traditional methods. The authors will then demonstrate that organizations are trending toward agile

methods.

Definition of Terms

The lack of a software engineering recognized “professional” or licensing standards means the field’s

language has a greater range of interpretation. As such, the authors, to a degree, had to generalize on

terms for the contextual orientation part of this paper.

Software Development Methods Spectrum

All software development lifecycles follow a similar pattern: problem identification; requirements

generation; solution development and deployment. What distinguishes the extreme ends of the

development spectrum is how much inventory of requirements the project team attempts to process

through a planning, estimating, developing and testing cycle.

For a classic stage gate process, large chunks of requirements are processed through compartmentalized

series of formal linear stages. The formality and compartmentalization is emendable to a functional

arranged organizations or geographically dispersed teams.

When strictly followed, the entire input from one stage has to be processed and validated before the next

stage can begin. There is no agreement in the literature on the definition of the stages [4]. For this paper,

the authors will use the Project Management Institute definitions: Requirements, Design, Build, Inspect

and Operational Transfer [5].

There are a plethora of other methods and their variants. To help describe the spectrum, see the Table 1

below which shows the methods by their agility rank which was based on their strength of constraints [6].

Agility

Rank

Method Very

Low

Low Med High Very

High

1 Scrum

2 Adaptive SW Development (ASD)

3 Lean Development (LD)

4 Crystal

5 eXtreme Programming (XP)

6 Dynamic Systems Development Method

(DSDM)

7 Rational Unified Process (RUP)

8 Team Software Process (TSP)

9 Feature-Driver Development (FDD)

10 Capability Maturity Model Integration (CMMI)

11 Capability Maturity Model for Software (SW-

CMM)

12 Personal Software Process (PSP)

13 Clean Room/Stage Gate

Table 1 Methods Ordered by Number and Strength of Constraints [6]

Stage Gate (predictive)

To articulate the linear process of the stage gate method, the authors will describe, at a summary level,

what is entailed for each ‘stage’. For all stages, there is a formal sign off ceremony marking the end of

each stage, which includes schedule and estimate updates. A key characteristic of the stage gate model is

that a stage can be concluded when the inputs of the next stage are achieved.

Business Analysis Stage

Using a strict stage gate model, business analysts are required to first survey the customer landscape to

determine key problem sets. Once the problem set(s) reach critical mass or a specified time period has

expired, the business analysis stage ends and a notion of a release begins. Senior management, generally

in charge of funding projects, will decide what projects are to continue beyond this stage to transcend to

the next stage [5].

Requirements Stage

Entering the requirements stage, the problem set is converted to enumerated product requirements.

Once identified, they can be categorized, prioritized and roughly scheduled.

In stage gate, requirements are to be consumed at a much later date; therefore, multi-dimensional detail

is necessary. Data has to be maintained in a persistent state because of this temporal issue. Requirements

may utilize use-cases to describe a particular problem in common language to give specification designers

an idea of the problem they are solving [5].

Design Stage

This stage specifies features in detail, including user interfaces, business rules, process diagrams,

architectural diagrams and outlines of documentation [8]. Requirements are broken down into

engineering language and constraints are noted. Any changes to the requirements after this stage need to

negotiate through a formal change control process involving all functional teams. Because all the

requirements are to be completely broken down into a specification, the change process is time

consuming. For example, the team cannot rely on temporal memory so requirements are often placed in

persistent storage such as a requirements or specification database [5].

Build Stage

Specifications are converted into machine code in this stage, the GUI is generated, and unit tests are run.

This is the largest and most expensive stage in terms of resource usage. This stage is where everything

scoped is developed. Installers, documentation, help and infrastructure systems are built to support the

product. Developers attempt to manage risk by developing critical portions of the code up front. Work

can be divided up by functional areas, architectural boundaries, etc, and finally brought together in an

integration step [5].

Inspection Stage

Deliverables are audited for quality, completeness, etc, against the specification and reports are

generated to determine possible rework [5].

Operational Transfer Stage

In the operational transfer stage, products are deployed to another entity. This process varies greatly

depending on the nature of the product [5].

Authors’ Empirical Observations of Stage Gate

The ceremonial characteristics of stage gate processes necessitate prescribed standards and methods.

Inherent in prescription is generalization which causes poor fitting constraints on highly dynamic

problems. Prescription is inflexibly and calcifies quickly. Some organizations measure the performance of

their project managers based on adherence to process instead of actual results. In turn, some project

managers follow process in name only which causes the calcification problem.

Adaptive (agile)

Agile was founded by a set of software engineering professionals in 2001, Kent Beck, James Grenning, et

al [7]. The group was motivated by finding a lightweight alternative to the less than flexible stage gate

model. They generated and published a four line manifesto [7]:

 Individuals and interactions over process and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

In support of the manifesto, they also created twelve principles, seven of which are communication

oriented, therefore, relevant to this paper and listed here [7]:

 Our highest priority is to satisfy the customer through early and continuous delivery

of valuable software

 Welcome changing requirements, even late in development

 Agile processes harness change for the customer's competitive advantage

 Deliver working software frequently, from a couple of weeks to a couple of months, with a

preference to the shorter timescale

 Business people and developers must work together daily throughout the project

 The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation

 Working software is the primary measure of progress

The principle addressing face-to-face conversation supports this papers contention that agile, at its most

fundamental, relies on collocation for higher-frequency and high-bandwidth communication.

Agile methods are adaptive software development processes where: product requirements are fluid;

planning and development activities are rhythmic; release quality is maintained and integration of

components is frequent. For agile planning, planning is done in a focal-length manner where close

activities are broken down to the task level and activities to be completed later are planned at a much

higher granularity [8]. For agile development, user stories are gathered in small chunks and processed

through to completed and shippable components. All planning and development is done in short

iterations, typically 2-4 weeks.

Hypotheses

1. All projects have diminishing returns by adding personnel to increase team capacity;

however, strict agile methods have a greater rate of diminishing returns than strict stage

gate methods.

2. In any project, communication bandwidth is lessened with virtual teams; however, strict

agile methods are impacted more negatively than strict stage gate methods.

3. The software industry is trending to adopting agile methods.

Literature Survey

This paper will use a literature survey to gather requisite data for analysis to support or refute the

hypotheses. The literature origins will range from books, magazines, online articles and research papers.

We narrowed our search to issues with sub-optimally large and geographically dispersed teams that

struggle to maintain necessary communication richness for project success whether agile or stage gate.

Communication Richness

The definition of communication is to transfer information from a transmitter to a receiver through a

physical media. According to Allen [9], there are three classifications of communication; Coordination,

Information and Inspiration (see Table 2). Coordination is about doing the “real” work and is fundamental

to all organizations. Since employees like open and honest communication [10] [11], Information is about

keeping all staff members informed of the “important” activities. And finally, Inspiration, in this type of

communication creativity is considered a significant factor. Allen notes that among the three types of

communication, Inspiration is considered the most unpredictable.

Table 2 Communication Classification [9]

Team Size

Teams are fuzzy things as team members can come and go throughout the project lifecycle —the

boundary of team is can be unclear [12][13]. According to Katzenbach, “a team is a small number of

people with complementary skills who are committed to a common purpose, performance goals, and

approach for which they are mutually accountable.” [14]

Team Size Variation over the SDLC

Due to the changing nature of skills required at different points in a project, team size is not a constant. It

can be shown that resource usage throughout the software development lifecycle (SDLC) has the

signature of the normal distribution as seen in figure 1 from class materials [15].

“Team Size includes employees related to all aspects of software development and delivery” [16]. This

statement is meant to encompass cross functional roles such as marketing, technical writing, software

developers, project managers, project leads, software quality engineers, et al [16].

Figure 1: Time Distribution of Project Effort [15]

Affects of Team Size

According to Abrahamsson, non-agile methods are better suited for requirements that can be predefined;

conversely, projects where requirements are changed frequently need adaptive methods, i.e. agile. The

nature of most software projects is that requirements are fluid. The success of agile is the method’s ability

to deal with fluidity using iteration boundaries as requirements change points [17].

The Documentation Issue

When rapidly changing requirements are the norm on a project, keeping documentation up to date

becomes a difficult process. Teams of a sub-optimal size [18] exacerbate the stale documentation

problem. Increases in staff for capacity create addition communication complexity and the need for

documentation [17]. In their book, Balancing Agility and Discipline, Boehm and Turner noted:

“When agile methods employ documentation, [the] emphasize is doing the minimum essential amount.

Unfortunately, most plan-driven methods suffer from a “tailoring-down” syndrome, which is sadly

reinforced by most government procurement regulation. These methods are developed by experts who

want them to provide users with guidance for most or all foreseeable situations.” *6]

Agile does not preclude documentation, but as stated in the manifesto the preference is: “Working

software over comprehensive documentation.” Documentation is also not the preferred method for team

communication as also stated in the manifesto:

“The most efficient and effective method of conveying information to and within a development team is

face-to-face conversation.”

Agile methods require close, informal and continuous face-to-face interactions at two levels: (1) among

team members; (2) between the development team and the client [19]. As team size increases, it

becomes necessary to leverage technology to fill communication gaps [19]. According to Bradner et al:

“Certain types of teams may be more likely to adopt one kind of technology over another. We found that

smaller teams adopted collaboration technology, while larger teams were more likely to adopt technology

designed to assist in their coordination efforts.” [20]

The “need” for face-to-face communication discussed above implies collocation which supports

hypotheses 1 & 2:

 All projects have diminishing returns by adding personnel to increase team capacity;

however, strict agile methods have a greater rate of diminishing returns than strict stage

gate methods.

 In any project, communication bandwidth is lessened with virtual teams; however, strict

agile methods are impacted more negatively than strict stage gate methods.

Scaling Agile

A common issue discussed at agile conferences and discussion boards is a perceived inability for agile to

scale to large projects. Although studies have shown that agile methods can be scaled [21] the major

thought leaders on agile believe it is not optimal [22]. When adding more personnel to a project, people

factors, such as amicability, talent and skills become amplified. The average project has less than ten

members, well within the reach of the most basic agile processes. Nevertheless, it is interesting to

occasionally find successful agile projects with 120 or even 250 people [23]. Leading researchers show

that to scale agile techniques, rules of agile have to be broken and some of the benefits are mitigated

[21]. Scaling agile can have other unintended consequences that are common is large groups.

Large groups feel less ownership of project issues therefore may not engage in team problem solving.

Process improvements discussed at iteration boundaries are less productive with teams of ten or more

[21].

Optimum Team Size

Most of the literature indicates an optimal team size of around seven members [6][9][24]. Research

suggests that large projects where members cannot provide adequate capacity need to break into

separate teams to maintain optimal communication pathways [22].

Thomas Allen [9], in an empirical study of engineering organizations around the world, concluded that

the probability of communication between engineers declined with increasing team size. See Figure 2.

Furthermore, he stated if the team were greater than ten, the frequency showed a very modest drop in

the probability of communication. Therefore, there was very little difference between ten members and

fifty.

Figure 2: Probability of Weekly Technical Communication as a Function of Dept. Size [9]

As with any large project, it is also suggested to break the teams at architected boundaries. However,

having teams with separate product managers runs the risk of divergent decision making. In Table 3, the

advantages and disadvantages are described.

Team
Size

Advantages Disadvantages

Small Higher participation

 Collocated teams

 More likely to learn the
work roles and expertise
of other members

 Intimate communication

 Better rapport

 Less number of
participants

 Expertise availability

 Cannot handle large
projects

 Higher cohesion

Large Diverse expertise

 Skills

 Problem-solving
approaches

 Adopting different roles

 More coordination costs
than smaller groups

 Combining work

 Arranging schedules

 More dominated by the
team leader

 Remembering each
member’s particular
expertise

 Lower participation in
group activities

Table 3: Team Size Advantages and Disadvantages Matrix [20]

Team Distance

Geographically Dispersed Teams

When searching for a solution, diverse talent pools can generate more ideas than insular ones.

Organizations search for dispersed knowledge and skills to stay competitive [2][3].

A virtual team — also known as a geographically dispersed team (GDT) — is a group of individuals who

work across time, space, and organizational boundaries with links strengthened by webs of

communication technology [2].

There are three dimensions that characterize degrees of ‘virtuality’:

 Members in virtual teams are physically dispersed

 Computer driven communication is used

 Interaction is required among team members

Table 4 shows the attributes of fully traditional and virtual teams.

Fully Traditional Team Full Virtual Teams

 Team members all collocated Team members in different locations

 Team members communicate face-to-

face (i.e., synchronous and personal).

 Team members communicate through

asynchronous and apersonal means.

 Team members coordinate the team

task together, in mutual adjustment.

 The team task is so highly structured

that coordination by team members is

rarely necessary.

Table 4 Fully Traditional & Full Virtual Teams [2]

The side affect of having personnel in dispersed locations is the decreased richness of communication. At

times, the expense of coordination becomes an offsetting factor over cost savings or diverse viewpoints,

which must be considered before moving to a virtual environment [25].

Communicating using the current state of the art technology will increase the probability of

communication but not replace the high-bandwidth face-to-face channels.

Probability of Communication

Thomas Allen [9], in an empirical study of engineering organizations around the world, concluded that

the probability of communication between engineers declined with increasing distance. See Figure 3.

Furthermore, he stated if engineers were 50 or more meters apart, the frequency showed a very modest

drop in the probability of communication. Therefore, there was very little difference between 50 meters

and hundreds of thousands of kilometers.

Figure 3 Probability of Technical Communication as a Function of Distance Between Work [9]

However, as technology advances, communication mediums are becoming increasingly more technical

[26] thereby altering Allen’s curves with an increase in probability as with distance shown in figure 4.

Figure 4: Probability of Technical Communication with different communication quality [26]

Affect of Team Distance

As the agile manifesto states: “The most efficient and effective method of conveying information to and

within a development team is face-to-face conversation.”

Coordinating projects over distance means an increase in overhead in order to absorb the frequent

changes in requirements common in most projects [27].

Informal communication and personal relationships are important to feeling part of a team. Team

distance creates an outsider psychological phenomenon of a lack of ownership [28].

Face-to-face communication is preferred over available technological solutions; therefore, agile methods

are generally difficult to apply to geographically dispersed projects [29]. A leading agile consulting and

training company, Construx [30], illustrates the concept with a diagram as seen in figure 5 below.

Figure 5: Communication Richness [30]

The literature shows that geographically dispersed teams have communication constraints which are

contrary to agile practices. Allen’s [9] study show’s the probably of communication goes down with

increased distance. This supports our hypothesis 2:

 In any project, communication bandwidth is lessened with virtual teams; however, strict agile

methods are impacted more negatively than strict stage gate methods.

Industrial Trends

There has been growth in organizations converting to agile processes to manage their software

development projects. Even with the backdrop of unsure executives, middle management has led the

growth of agile practices and their hiring practices reflect this reality [31]. For example, figure 6 illustrates

that stage gate (SDLC) type job skills (i.e. ISO9000 standards or the RUP process) have leveled off while

positions requiring agile skill are still increasing.

Figure 6: Agile Employment Trends [31]

The Indeed.com study data supports our hypothesis that the software industry is trending positively

toward adopting agile processes.

Conclusion

Summary

The paper demonstrates the trend taking place in the software industry of organizations adopting agile

processes while compensating for virtualized teams. Because agile, based on its principles, declares face-

to-face as essential it is of little wonder articles and tools are emerging to address the issues.

The literature posited clearly states that smaller team sizes (roughly 7) are preferable to larger team sizes

when using agile methods.

Agile methods are affective when applied to the appropriate problem set such as fluid requirements, a

pervasive issue in software development. In order to deal with the fluidity, agile relies on collocation due

to its communication richness characteristics.

At the Agile 2008 Conference in Toronto, Canada, one of the authors attended a session on “Virtual

Agile.” The speaker surprised the audience with his first statement:

“So you want to go agile and virtual, my advice is, don’t do it.”

He went on to discuss the struggles and mitigating techniques in order to shoehorn the two together, but

the primary advice was striking.

In an extension to Allen study, Boutellier et al [26] showed some promise of bridging the communication

gap with promising technologies, however, the gap is vast and face-to-face is still preferred.

Future Research

In our research, some books discussed the divide and conquer techniques that use architectural

boundaries and multiple agile teams to mitigate geographically dispersed project problems. The

http://www.indeed.com/jobtrends?

technique of dividing components with clear interfaces is not new, but using it with agile is novel and may

have unintended consequences such as decision divergence.

A study on how teams manage multiple agile teams on a single code base might elicit deeper mitigation

techniques. An additional study using cutting edge technologies such as ‘telepresence’ systems may show

the probability of communication can increase dramatically thereby making virtual agile, agile.

References

[1] W. Davidow, “Marketing High Technology: An Insider's View,” Free Press, 1986.

[2] J. Kratzer, R. Leenders, and J. Van Engelen, “Keeping virtual R&D teams creative,” Research Technology

Management, vol 48, Mar. 2005, pp. 13-16.

[3] S. Machlis, “Computers bring global design teams closer,” Design News, vol. 49, 1993, pp. 27-28.

[4] H. Kerzner, “Project Management: A Systems Approach to Planning, Scheduling, and Controlling”,

 6th ed., p.74.

[5] J. Phillips, “PMP: Project Management Study Guide,” p.49.

[6] B. Boehm, R. Turner, “Balancing Agility and Discipline,” Addison Wesley, 2003, p.167, p.28.

[7] D. Anderson, “Agile Management for Software Engineering,” Prentice Hall, 2004.

[8] M. Cohn, “Agile Estimating and Planning,” Pierson Education, Inc., 2006, p.28.

[9] T.J. Allen, “Architecture and Communication among Product Development Engineers,” California

 Management Review, vol. 49, Winter 2007.

[10] “Why Some Teams Succeed (and So Many Don’t).,” Harvard Management Update, vol. 11, Oct. 2006, p.3-4.

[11] K. Shirahada, and K. Niwa, “Future-Orientated Mindset’s Contribute to Management of Corporate

 R&D Personnel Motivation in Japan,” International Journal of Innovation and Technology

 Management, Vol. 4, No. 4, 2007.

[12] T. DeMarco, T. Lister, “Peopleware: Productive Projects and Teams,” Dorset House Publishing, 2
nd

 Ed, 1999, p.

132-135.

[13] Prasad Balkundi and David A. Harrison “Ties, Leaders, And Time In Teams: Strong Inference About Network

Structure’s Effects On Team Viability And Performance”, p.49-68

[14] J. Katzenbach, D. Smith, “The Wisdom of Teams: Creating the High-performance Organization.” Boston: Harvard

Business School, 2006.

[15] J. Meredith, S. Mantel, “Project Management - A Managerial Approach,” 7
th

 ed., 2009, Dr. Anderson’s ETM-545

class slides, p.15.

 [16] “3
rd

 Annual Survey: 2008 The State of Agile Development,” http://www.versionone.com, conducted June-July

2008.

[17] P. Abrahamsson, O. Salo and J. Ronkainen “Agile software development methods- Review and analysis”. VTT

Electronics 478, ESPOO 2002, p.95-96.

[18] M. Vax, S. Michaud, “Distributed Agile: Growing a Practice Together,” Agile 2008 Conference, p.310.

[19] L. Dubé , V.l Roy and C. Bernier “An Agile Method, a Contractual Relationship and Distance: An Unlikely Recipe for

System Development Success” Cahier du GReSI no 08-01 Juillet 2008, p.3-7.

[20] E. Bradner, G. Mark and T. D. Hertel, “Effects of Team Size on Participation, Awareness, and Technology Choice in

Geographically Distributed Teams.,” Proceedings of the 36th Hawaii International Conference on System Sciences

(HICSS’03), p.1-10.

[21] W. Crebs, P. Kroll, E. Richard, “Un-assessments — reflections by the team, for the team,“ Agile 2008 Conference,

p.384-389.

[22] K. Schwaber, “Agile Project Management with Scrum,“ Microsoft Press, 2003, p.119-127.

[23] A. Cockburn and J. Highsmith “Agile Software Development: The People Factor, November 2001 (vol. 34 no. 11)

pp. 131-133

[24] J. Coplien, N. Harrison, “Organizational Patterns of Agile Software Development,” Pearson Prentice Hall, 2005,

p.105.

 [25] S. Horwitz and I. Horwitz, “The Effects of Team Diversity on Team Outcomes: A Meta-Analytic Review of Team

Demography,” Journal of Management, vol. 33, p: 987, 2007.

[26] R. Boutellier, O. Gassmann, H. Macho, and M. Roux, “Management of dispersed product

 development teams: The role of information technologies,” R&D Management, vol. 28, Jan.

 1998, p. 13.

[27] “Using an Agile Software Process with Offshore Development,” Martin Fowler,

http://www.martinfowler.com/articles/agileOffshore.html, Accessed December 1, 2009.

[28] T. Björnfot ,“Agile Software Development and its Effects on Communication in Distributed Projects”, HUT /

SoberIT 2003 Fall T76.651 Seminar on Distributed Product Development pp.1-10.

[29] P. Bertrand, J. F. cois Delisle and F. Khomh “Toward a Framework for Agile methods in Offshore Outsourcing,”

Department of Informatics and Operations Research University of Montreal, Quebec, Canada pp-1-10

[30] “Being Agile Without Being Extreme,” Construx Training Material, 2005.

[31] J. Moore, “The ASPE Blog,” Available: http://theaspeblog.blogspot.com/2009/06/agile-industry-

 watch-agile-jobs.html, Accessed Dec. 1, 2009.

http://www.martinfowler.com/articles/agileOffshore.html

