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Abstract

It is increasingly recognized that logistics can play a vital role in affecting
organization performance and competitiveness. The purpose of this study is to examine
one particular aspect of logistics: warehouse performance.

Data Envelopment Analysis (DEA) is used to measure the relative operating
efficiencies of 58 warehouses. In particular, the dual version of the CCR input-oriented
multiplier model, involving two inputs and five outputs, is utilized for this purpose. Use
of this model allows us to consider the impact on relative operating efficiencies of
imposing additional constraints on three of the output weights appearing in the model.

The impact on the relative efficiencies of some warehouses was dramatic. Almost
half the warehouses originally identified as being efficient were no longer so. The
analysis illustrates the value of using constraints on factor weights to better characterize

the particular application area under consideration.



Section 1: Introduction

Historically, the area of logistics has not received the level of academic attention
reserved for marketing, finance, and operations management. In fact, it would be accurate
to say that organizations themselves did not place the emphasis on logistics that was
deserved.

There are many possible explanations for this historical state of affairs. Along with
logistics, even operations management did not receive the proper level of attention after
World War II. Perhaps it was the lack of glamour associated with the areas of operations
and logistics. For many people a warehouse represented a facility where material entered.
was stored, and finally shipped. Nothing too exciting about that.

Well, the times have changed. Organizations now recognize the critical role
logistics can play in affecting overall organization performance in an increasingly
competitive global environment. Technological developments in logistics operations have
dramatically accelerated. For example, many of today's modern warehouses are filled
with new and expensive technology designed to achieve lower costs, increased accuracy,
and higher levels of customer service.

This study concentrates on one area of logistics that of warehouse performance.
Modern warehouses can be very complex and expensive facilities. Their performance can
no longer be ignored or taken for granted.

More specifically, the purpose of this study is to re-evaluate the performance of a
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collection of warehouses using the tool of weight restricted Data Envelopment Analysis
(DEA).

Data Envelopment Analysis was introduced in 1978 by Charles, Cooper, and
Rhodes (CCR) as a method for evaluating the relative efficiencies of decision-making
units (DMUs) having a similar mission (Charnes et al., 1979). One of the strengths of
DEA is that it readily allows for the analysis of organizations using multiple inputs to
produce multiple outputs. Another strength is that DEA does not require an explicit
representation of the production relationship linking inputs to outputs. Finally, DEA uses
a mathematical technique called Linear Programming that 1s well-established and
relatively easy to implement.

There are, in fact, many versions of DEA models which have been developed since
the seminal work of CCR (Charnes et al., 1994). The particular model selected will often
depend on the purpose of the study. This study will utilize a model referred to as the dual
version of the CCR input-oriented multiplier model. In order to better understand the
purpose of this study, it would be useful to examine this model in somewhat greater
detail.

Toward this end, let us consider a collection of n DMUs, each using m different
inputs to produce s different outputs. The quantity of output j (j=I....,5) produced by
DMU £ (k=1....n) will be denoted by y; . Similarly, x; , will denote the quantity of input

i (i=1,...,m) used by DMU &£



Let the letter o represent the particular DMU under consideration. A weighted sum

of outputs for DMU o is defined to be
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where u, is referred to as the multiplier or factor weight corresponding to output j for
DMU o. We require that u, > 0 for j=1 ,...,s.

Similarly, a weighted sum of inputs for DMU o is defined to be

m
Z vr‘ x.I'Cr

i=1
where v, is referred fo as the multiplier or factor weight corresponding to input i for
DMU o. We also require that v, > 0 for i=1,....m.
The efficiency of DMU o is then defined to be the ratio of the weighted sum of
outputs to the weighted sum of inputs. Letting h, denote the efficiency of DMU o, we

have that
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The problem faced by DMU o can then be stated as follows:

Model A: To find that set of output weights u; (j=1,....5) and input weights v, (i=/,...m)



which

z“: “ Vo 0

f=1

I

maximize h, =

subject to the constraints

&2 ekl n)

m (2)
E pi’ 'r:.k

§+1

v,z 0 (i=l,..m) (3)
w2 0 (1=l..3) (4)

The left side of the constraints given by (2) can be interpreted as the efficiency of
DMU k, where the factor weights u, and v, used to assess that efficiency are the factor
weights selected by DMU o to maximize its own efficiency score. In other words, the
left-hand side of (2) can be interpreted as the efficiency of DMU k from the perspective
of DMU o.

Thus, the constraints given by (2) require that the efficiency of DMU £ using
DMU o’s factor weights cannot exceed 1. And this must be true for each k=/,...,n. In
particular, DMU o’s efficiency also cannot exceed 1. It should also be clear from the
required non-negativity of the factor weights that the efficiency of DMU o must be at

least 0.

The problem as stated above is non-linear in nature, the solution to which can be
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difficult to obtain. A linearized version of the problem will lend itself more readily to
solution. Such a linear version can be obtained by making two changes to the above
problem formulation.

The first change involves simply rewriting the constraints given by (2) as follows:

or
Z U Yy - z vx. =9 (k=1,...,n)
J=1 i=1
The second change requires making the additional assumption that
2 ur‘ x:’a =1
i=1
The linearized version of the problem faced by DMU o can now be stated as
follows:

Model B: To find that set of output weights u, (j=/,...,s) and input weights v, (i~ 1,....m)
which

¥

maximize w.q = IZ1 H} -}_;u



subject to the constraints

m
E vr"x:'a = 1‘
i=]

&5

El UV z; vx,. <0 (k=L..n)
3 £

v; 2 0 (i=1,..m)
05 0 ff=1..8)

Model B actually represents a set of n separate linear programs, one for each
DMU. Thus, the final result of the analysis is an efficiency score and a set of non-
negative factor weights for each of the n DMUs under consideration. And, to repeat an
observation made earlier, the efficiency score for each DMU must be a number between 0
and 1, with higher values representing higher levels of efficiency.

The above examination of the dual version of the CCR input-oriented multiplier
model sheds light on a potential weakness of DEA. A DMU, in its effort to maximize its
efficiency score, would emphasize those outputs where it was relatively successful and
de-emphasize those outputs where it was relatively unsuccessful. In the extreme case, a
DMU might very well place all of its weight on just a single output.

The possible result of all of this is that a DEA analysis could result in multiple
DMUSs achieving an efficiency score of 1. The phenomenon of multiple DMUs being
viewed as efficient has the potential to undermine the usefulness of the results since it

may not allow us to sufficiently discriminate between DMUs in terms of their

7



performance.

Accordingly, we seek a means to further discriminate between the multiple DMUs
achieving an efficiency score of 1. The method chosen involves imposing additional
constraints on factor weights that more closely reflect the underlying characteristics of the
application area under consideration. By doing this, we will be able to achieve a more
meaningful discrimination between the performance of DMUSs.

The first objective is to reformulate a warehouse performance model originally
developed by Hackman and Frazelle (1994) using the dual version of the CCR input-
oriented multiplier model.

This lays the foundation for the second objective, which is to impose additional
constraints on the output weights that reflect the nature of the warehouse environment,
and then examine the impact of these additional constraints on the resulting efficiency

scores (Roll & Golany, 1993; Roll et al., 1991).



Section 2: Literature Review
The literature of warehouse models can be categorized in a number of ways. One
approach is to use the following three categories: Strategic Planning Models, Warehouse
Design Models, and Operations Planning Models (Cormier & Gunn, 1992;

Hollingsworth, 1995; Warehouse Education and Research Council, 1998).

1. Strategic Planning Models:

One type of strategic planning model treats a warchouse or warehouses as part of
an overall logistics network or supply chain. Such a model is concerned with the design
of an entire distribution network. Key questions addressed by such a model would
include the following:

O How many warehouses should there be in the distribution network?

O What should be the general geographic location of these warehouses?

0 What should be the storage and throughput capacity of these warehouses?

0O How should customers be allocated to the warechouses?

O H_cnw should products be allocated to the warehouses?

The benefits of improved distribution network design can be the following:

O Reduced transportation costs.

O Improved customer service.

O Reduced inventory.

O Reduced warehouse costs.



0 Reduced warehouse costs.

Network design models use modeling tools such as mathematical programming and
computer simulation.

Another type of warehouse model that can be placed in the strategic planning
category involves the selection of a specific site for the warehouse. This goes beyond the
identification of the best geographic area to locate a warehouse. Much more specific
decision factors must now be considered. These include the following:

O Land and construction costs.

O Specific tax and utility rates.

0O Labor availability and wage structure.

0O Zoning requirements.

O Transportation factors.

Site selection models use a variety of multi-criteria techniques, an example being
the Analytic Hierarchy Process (AHP).

Warehouse cost models represent a third type of model that can be placed in the
strategic planning category. Simply put, this type of model answers the question: how
much does it cost to operate your warehouse?

Such cost models enable management to identify high-cost operations and then
carry out efforts to reduce these costs. They can also be used to investigate the possibility
of using third-party providers.

Four main categories of costs are usually considered. These are: direct handling,
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direct storage, operating administration, and general administration. The modeling tool
involves financial analysis using spreadsheets.

One frustration with the traditional approach to financial modeling of warehouse
costs is that it is often unable to isolate the costs associated with specific activities. For
example, while the overall cost of handling may turn out to be unexpectedly high, it may
not be possible to identify the specific activities that led to this result.

An alternative to the traditional approach that addresses this issue is activity-based
costing (ABC). As its name suggests, ABC identifies costs at the individual activity level.
While holding great potential, the complexity of implementing it has limited its

acceplance.

2. Wareh i Is:

Warchouse design models address the internal arrangement of the facility as well
as its overall size and shape.

Many functions must be performed in fulfilling the mission of a warehouse. These
functions include receiving, inspection, storage, order picking, sorting, shipping, and
many others. At the highest level, warchouse design involves identifying where these
various functions must be located in order to optimize warehouse operations. The
modeling approaches to accomplish this include relationship diagraming, mathematical

programming, and computer simulation.
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At a more detailed level, the internal arrangement of the facility deals with issues
such as:

O The number and orientation of storage racks;

O The number and size of aisles;

O The allocation of scarce storage space among competing uses.

Again, mathematical programming and computer simulation are two of the maimn

modeling tools used for carrying out this more detailed design analysis.

Model of Wareh Efficien sing Data Envelopm

Hackman and Frazelle utilized Data Envelopment Analysis (DEA) to evaluate the
relative efficiencies of 58 warehouses (1994). The Hackman-Frazelle model of warehouse
operations involved two inputs and five outputs. They are defined as follows:
[nputs:
1. Equipment;

Equipment was measured in terms of the replacement cost of storage and
material-handling equipment. This included the replacement cost of three types of
equipment: vehicles, small parts storage systems, and conveyer systems. Replacement

costs were used in lieu of actual costs to allow consistent comparisons among firms in

their database.
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2, Labor

Labor was measured in terms of annual labor hours, Annual labor hours was the
sum of two components: direct and indirect labor hours. Direct labor hours involved labor
hours spent performing operations related to storing and shipping. Indirect hours included
those hours spent on maintenance, supervision, and management. Hours spent on other
indirect operations such as security, customer satisfaction, traffic, and personnel were not
included. Many of the warehouses in their database did not have accurate estimates of
hours used by function. Therefore, to achieve somewhat consistent comparisons among
firms in their database, the total number of hours was calculated from the headcounts

used in each function, assuming 2000 hours per person per year.

Qutputs:

1. Annual broken-case lines shipped, denoted by BC.

2. Annual full-case lines shipped, denoted by FC.

3. Annual pallet lines shipped, denoted by P.

4. Accumulation, denoted by A.

5. Storage, denoted by S.

Some additional explanation of the nature of warehouse outputs used in the
Hackman-Frazelle model is needed. An order may be comprised of a single line or of
multiple lines, where a line denotes one or more of a specific item being ordered. Total

lines shipped were disaggregated into the three standard categories of broken-case, full-
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case, and pallet lines because the resources required to complete the associated picking
activities are typically different in type and amount.

Accumulation is a measure of the resources required to bring together the
individual lines picked to form the orders that are to be shipped. Accumulation is
measured as Annual lines picked - Annual orders shipped. Thus, a single-line order
would have an accumulation index equal to zero. On the other hand, the accumulation
index for an order would increase as the number of lines comprising the order increased.
Finally, storage is a measure of the resources required to store inventory in the
warehouse. Hackman and Frazelle used the CCR input-oriented envelopment model to
generate their efficiency scores. That model is given as follows:

min & for DMU o
8, A,

n
subject to: y -
] ;akx‘.k < e x, foreachi=1,..,m

1

) 5 :'“;.-J}x

,}f}ﬂfor each j=1,....s
k=1

A, = 0 for each k=1,...,n

where
X; = the quantity of the ith input for DMU k.

Vi = the quantity of the jth output for DMU k.
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DMU o represents the particular DMU for which the above linear program 1s
solved. Thus, the above linear program is solved » times, once for each DMU.

The result of the above analysis will be, for each DMU, an efficiency score &
between 0 and 1 and non-negative values of A,,....A,.

The above DEA model does not lend itself to the imposition of additional
constraints that reflect the special characteristics of the inputs and outputs for the
particular application under consideration.

Consequently, a different formulation, the dual version of the CCR input-oriented
multiplier model, was selected to investigate the impact of additional constraints, It
should be emphasized that, without any additional constraints, both models will generate

the same efficiency scores for the DMUSs under consideration.
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Section 3: Methodology

It would be useful at this point to restate the purpose of this study, which is to
examine warehouse performance utilizing the tool of Data Envelopment Analysis. To
accomplish this purpose the study was divided into two parts.

Part I of the study involved reformulating the original Hackman-Frazelle model in
the form commonly referred to as the dual version of the CCR input-oriented mutliplier
model, hereinafter referred to as the CCR,,-I model. The CCR,-1 model is a linear
programming model that explicitly uses input and output weights in its formulation.

Part II of the study involved modifying the CCRy-I model by introducing
additional constraints on three of the output weights. These additional constraints reflect
specific characteristics of the warehouse environment not captured in the original model.
The results of the two models were then compared in order to better understand the

impact of introducing additional constraints into the model.

Part I: The CCRp-1 Model Applied to Warehouse Performance

The following notation will be used in the CCR,-I model applied to warehouse

performance:

Let x,, denote the quantity of the ith input for DMU k, where i=1,2 and k=1,...,58.
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In particular,

x, = the replacement cost of equipment for DMU £,

x,,= total labor hours for DMU £.

Let y,, denote the quantity of the jth output for DMU k, where j=1,..., 5.
In particular,

¥,+= Annual broken case lines shipped by DMU £,

V5= Annual full-case lines shipped by DMU &,

Vi, = Annual pallet lines shipped by DMU &,

V= Storage for DMU k,

Vs, = Accumulation for DMU £.

The CCRy,-I model is then given as follows:
Maximize w, = v 3 Y

v;:- h'j J=

subject to:

5 2
le Yy - lep‘.x,.k < 0 (k=1,.,58)
i= (i

v,> 0 (i=1, 2

w, >0 (j=1,..3)
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Additional Terminolo
w,, denotes the efficiency of DMU o,
v; is referred to as the weight (or multiplier) for input 1,
u; is referred to as the weight (or multiplier) for output A

It should be emphasized that the above problem represents 58 separate linear
programs, one for each DMU. The result of each individual program will be values for
w, ¥, (=1, 2} and u. (f=1 ,....3).

The AMPL version of the above CCR,,-I model, the data, and the results of the
calculations can be found in Appendix A of this report. Note that the warehouse inputs
and outputs are abbreviated in the AMPL model as follows:

RC = Replacement cost for equipment

LH = Total labor hours

BC = Broken-case lines shipped

FC = Full-case lines shipped

P = Pallet lines shipped

S = Storage

A = Accumulation

Part II: The CCR,,-I Model With Constraints on Qutput Weights
As stated earlier, Part II of the study involved modifying the CCR-I model by

introducing additional constraints on three of the output weights. The constraints were of
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the following form:
TR (1)

Recall that:

Output 1 = Broken-case lines

Output 2 = Full-case lines

COutput 3 = Pallet lines

The constraints imposed on the output weights represented by inequality (1) reflect

the fact that the resources required to carry out broken-case, full-case, and pallet picking
activities are usually different in type and amount. More specifically, the inequality (1)
expresses the idea that the resources required to carry out broken-case picking activities
are at least as great as those required to carry out full-case picking activities which, in
turn, are at least as great as those required to carry out pallet picking activities.

The CCRy-1 model, now including the additional constraints given by (1), is as

follows:

Maximize w =Y u
Vo, U, T
B3y J=1

subject to:

Y uy, -2 vx, <0 (k=1,..,58)

J=1 i=1

19



H, > MU

Py

u;

0 (i=12) .

Iy

B

i

u 2 0 G=1...3%
The AMPL version of the above CCR,-I model, the data, and the results of the
calculations can be found in Appendix B of this report.

A comparison of the results from the two models is given in Chapter 4 of this

report.
It would be useful at this point to discuss how the additional constraints given by

inequality (1) were implemented using AMPL (Fourer et al., 1993).

Inequality (1) can be rewritten as the following two inequalities:

TR (2)
U, > u, (3)
Inequality (2) can then be written as follows:
u, - u, 2 0
or
(2a)

U, = U, +~ 0wy~ 0u, +0u; >0

Inequality (2a) is in a form that lends itself to easy implementation in AMPL. This

involves introducing a new parameter, call it a, which is indexed over the set Y of outputs

and whose values are 1, -1, 0, 0, and 0.
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Inequality (2a), expressed in AMPL, will look as follows:
sum {f in y} ufj] #afjj] = =0,
where afl] =1, af2] =-1, af3] = af4] = a[5] = 0.
Using the same logic, inequality (3) can be written in AMPL as
sum {j in¥} ufj] * bfj] = =0,
where now we’ve introduced a new parameter b indexed over Y and having values
bf1] =0, bf2] =1, bf3] =-1, b[4] = b[3] = 0.

The values of the parameters a and b will appear in the AMPL Data File as

follows:
Param: a b L=
BC /| 0
FC -1 I
P 0 -1
S 0 0
A 0 0
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Section 4: Analysis of Results

The table below compares the results of Model 1 with Model 2
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Analysis of Results: Comparing Model 1 to Model 2

1. Comparison of Efficiency Scores:

The imposition of constraints on three of the output weights had the effect of
reducing, or leaving unchanged, the efficiency score of each DMU (warehouse).

The above result is to be expected. For the CCR;-1 model under consideration,
each DMU faces the problem of selecting those values of factor weights that maximize its
own efficiency, subject to those factor weights obeying certain constraints. Imposing
additional constraints on three of the output weights will generally reduce (but certainly
not expand) the possible choices of factor weights. Thus, efficiency scores calculated
with the additional constraints in place will certainly be no higher than the original
efficiency scores and may very well be lower.

Under Model 1, ten warehouses achieved efficiency scores of 1.0. Under Model 2,
six of these warehouses retained their efficiency scores of 1.0 while four saw their scores
decline, sometimes dramatically. This will be examined in greater detail in a later section.

Since each efficiency score in Model 2 is reduced (or at least unchanged) from its
corresponding value in Model 1, the average efficiency score for Model 2 will be
smaller than for Model 1. The results are as follows:

Model 1: Average efficiency score = 0.674

Model 2: Average efficiency score = 0.504
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2. Calculation of Measures of Correlation:
As another method for comparing the efficiency scores of Model 1 with Model 2,
it would be useful to calculate measures of correlation. Two measures were considered:

the Pearson correlation coefficient , and the Spearman correlation coefficient B

A. Pearson Correlation Coefficient r;

The Pearson correlation coefficient 7 is a measure of the strength of the linear
relationship between two numerical variables. Two variables are linearly related, if in a
scatterplot, the points cluster around a straight line.

The Pearson correlation coefficient r ranges in value from -1 to 1. A value of

r=1 indicates that all of the points fall exactly on a line with positive slope. If the points
fall exactly on a line with negative slope then r=-1. The magnitude of r tells us how
tightly the points cluster around the line.

For the two sets of efficiency scores under consideration, the Pearson
correlation coefficient 7=0.808 indicates a relatively strong linear relationship

between the two sets of efficiency scores.

B. Spearman Correlation Coefficient Eet

The Spearman correlation coefficient #, is a measure of the degree to which the
relationship between two numerical variables is monotonic. An Increasing monotonic
relationship is one where the value of y increases as the value of x increases. A decreasin g

monotonic relationship is one where the value of y decreases as the value of x increases.
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The Spearman correlation coefficient is calculated by first replacing the actual data
values with their corresponding ranks and then calculating a Pearson r for the ranked
data. For this reason, r; also ranges between -1 and 1.

The formula for rg is given by

2 : (d?)

where 7 is the sample size and d is the difference for each pair of scores between the
ranks of the two scores. Considering for a moment just the scores for Model 1, rankings
for tied scores are calculated by averaging the ranks that would have been assigned to
these tied values. The same approach would be used for dealing with tied scores for
Model 2.

Why use a Spearman correlation coefficient? It has the advantage of being
sensitive to a broader range of relationships than the Pearson coefficient r. Any linear
relationship is monotonic, but not all monotonic relationships are linear. Thus, a low
value for r would indicate a relatively weak linear relationship between two
variables, but the corresponding value of r; could be relatively high, indicating a strong
monotonic relationship between the two vanables.

Another reason for using the Spearman correlation coefficient r, is that the
magnitude of the Pearson correlation coefficient r can be greatly affected by outlying

values. Outliers can cause r to either greatly increase or greatly decrease, depending upon
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where they appear in the scatterplot. One way to bring outliers under control is to use
ranks rather than the raw data and then use r, to calculate correlation,

In our particular situation, the value of the Pearson correlation coefficient
r=0.808 indicates a relatively strong linear relationship between the two sets.of efficiency
scores. But it is also possible that this value of r overstates the strength of the linear
relationship between the two sets of scores because of the number of DMUs achieving
efficiency scores of 1.0 in both Model 1 and Model 2. If the strength of the positive linear
relationship is not as great as seemingly indicated, is there at least evidence for a strong
increasing monotonic relationship between the two sets of efficiency scores? A value of

the Spearman correlation coefficient »;=0.791 indicates this is the case.

3. The DMUs Experiencing the Largest Changes in Efficiency

Two DMUSs stand out in terms of experiencing the largest changes in

efficiency:
DMU Efficiency Efficiency A Efficiency
#l =1.0 =0.24 -0.76
#0 =1.0 =0.31 -0.69

It would be useful to understand how the imposition of the additional constraints on three

of the output weights resulted in such large reductions in efficiency. For DMU #1, the

analysis 1s as follows:
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Factor Weights Factor Weights

Outputs Values of Outputs Model 1 Model 2
BC 396 0.00000 0.00006
FC 2430 0.00041 0.00006

P 0 0.00000 0.00000
S 633 0.00000 0.00011
A 595 0.00000 0.00000

Under Model 1, output BC (broken-case lines shipped) where DMU #1 1s a
relatively low performer compared to other DMUs received a zero weight, meaning
output BC made no contribution to the efficiency score of DMU #1. Meanwhile, output
FC (full-case lines shipped), where DMU #1 is the highest performer among all DMUs,
received a relatively large factor weight. It can also be seen from the above chart that the
remaining three outputs, P, S, and A, make no contribution to DMU #1's efficiency score
since the products of their respective output values and factor weights are all zero. Thus,
DMU #1's efficiency score of 1.0 is due solely to output FC.

The impact of Model 2 is to increase the importance of output BC (where DMU
#1 1s relatively weak), while decreasing the importance of output FC (where DMU #1 is
extremely strong). The end result is to only marginally increase the factor weight
associated with BC, while significantly reducing the factor weight associated with FC. Of
the remaining three outputs, only S (storage) made a small contribution to DMU #1's

efficiency score. Consequently, the net result was to significantly reduce DMU #1's
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efficiency score.
For DMU #6, the analysis is as follows:

Factor Weights Factor Weights

Outputs Values of Outputs Model 1 Model 2
BC 2695 0.00002 0.00006

FC 2205 0.00038 0.00006

P 0 0.00000 0.00000

S 317 0.00000 0.00009

A 4651 0.00002 0.00000

Compared to other DMUs, DMU #6 had the second-highest value of FC (full-case
lines shipped), just below DMU#1 and significantly above all other DMUs. In terms of
output BC (broken-case lines shipped), DMU #6 was relatively strong, with only 13
DMUSs having larger values of output BC.

The dynamics at work which explain DMU #6's significant reduction in efficiency
are similar to that of DMU #1. Under Model 1, output FC (where DMU #6 was a very
high performer) received a relatively large factor weight. The remaining outputs all
received very low or zero weights. Therefore, output FC contributed 0.84 to DMU #6's
efficiency score of 1.0, with outputs BC and A contributing the rest.

As was true for DMU #1, Model 2 had the effect of significantly reducing the
factor weight associated with output FC while only marginally increasing the factor

weight associated with output BC. The factor weight associated with output A was
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reduced to zero, thus eliminating output A’s contribution to DMU #6's efficiency score.
Finally, the factor weight associated with output S marginally increased from zero to
0.00009, but the very small value of S (=317) resulted in S making only a small
contribution DMU #6's efficiency score. Thus, the net result was to significantly reduce

DMU #6's efficiency score.

cing No Chan fficiency:
To provide a different perspective, it would be useful to examine a DMU that
experienced no change in efficiency as a result of the imposition of additional constraints
on output weights.

Such would be the case for DMU #3 which had an efficiency score of 1.0 in both

models.
DMU £3
Factor Weights Factor Weights
Outputs Values of Outputs (Model 1) (Model 2)
BC 9700 0.00009 0.00010
FC 300 0.00041 0.00010
0 0.00169 0.00010
S 168 0.00000 0.00000
A 9048 0.00000 0.00000

Compared to other DMUs, DMU #3 had the third highest value for output BC

while having a relatively low value for output FC. Model 1 assigned a relatively low
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weight to output BC while assigning a relatively high weight to output FC. Output BC
contributed 0.87 to DMU #3's efficiency score of 1.0, with output FC contributing the
remainder.

The impact of Model 2 is to increase the importance of output BC (where DMU
#3 is relatively strong) while decreasing the importance of output FC (where DMU #3 is
relatively weak). As was true for both DMU #1 and DMU #6, Model 2 results in just a
marginal increase in the factor weight associated with output BC, while there is a large
decrease in the factor weight associated with output FC. But this time, because of the
relative sizes of outputs BC and FC, the net result is to leave DMU #3's efficiency score
unchanged at 1.0.

In summary, for all three DMUs examined, the impact of Model 2 was to
significantly decrease the factor weight associated with output FC while only marginally
increasing the factor weight associated with output BC. For DMUs #1 and 6 which were
both very strong in output FC, this had the effect of significantly reducing their efficiency
scores. For DMU #1, the additional constraints imposed by Model 2 were in line with the

relative importance of outputs BC and FC, so that there was no reduction in efficiency

SCOrE.

Ranking was done as follows: first, the rank assigned to a DMU was

inversely related to its efficiency (i.e., lower efficiency scores correspond to higher values
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of rank). Second, DMUs having the same efficiency score received the same rank.
Finally, if 10 DMUs each had an efficiency score of 1 (and thus rank = 1), the DMU
having the next highest efficiency score received a rank = 11.

As 1s clear from the results summarized on Page 23, the two DMUs
experiencing the largest change in rank (DMUs #1 and #6) were also the two DMUs
experiencing the largest decreases in efficiency when going from Model 1 to Model 2.
But this phenomenon is not universally true. For example, DMU #25 experienced a
relatively large decrease in efficiency equal to 0.31, but its change in rank was only 3
units. This is explained by the fact that DMU #25's efficiency score of 0.49 under
Model 1 gave it a rank of 45, ahead of only 13 DMUs. While its efficiency score dropped
to 0.31 under Model 2, the 13 DMUs below it were also experiencing reductions in
efficiency. Thus, it is possible that a relatively large reduction in efficiency does not

automatically translate into a relatively large reduction in rank.

6. Analysis of Qutput Weights:
A careful examination of the results for Model 2 (see Appendix B) reveals

that, for 28 DMUs
Model 2: Upe=Ue=U; (1)
This equal weighting did not occur for any DMU in Model (1). What might explain this

phenomenon?

The table shown below provides a summary of the relationships between



Ugc, U, and Up in Model 1 for the 28 DMUS satisfying the equality given by (1) in

Model 2:
Relationship Between Upe Uge and Up Number of DMUs
Ugc < Ve < Vp 18
Uge < U]_, < Upe 6
Upe =Up <Ug I
Upe <Uge <Up 2
Uge =Uge <Up 1

Table 2. Summary of the relationships between Upe Upc and Up in Model 1
for the 28 DMU s satisfying (1) in Model 2.
Recall that for Model 2, the additional constraints imposed on three of the output weights
were given by
Ugc 2 Upc 2 Up (2)

Thus, we see that for 18 of 28 DMUSs, the weights placed on the three outputs in Model 1
are in complete conflict with the additional constraints represented by (2). For the
remaining 10 DMUSs, the weights placed on the three outputs in Model 1 are in partial
conflict with (2).

It follows that for the 28 DMUs in question conformance to the additional

constraints represented by (2) requires changes to the factor weights Uy, U,.. Up such

thﬂt UHC o UF‘." = UF‘



Section 5: Conclusions and Future Research

The results of this study illustrate the impact of imposing additional
constraints on factor weights in the context of a data envelopment analysis approach to
measuring warehouse efficiency. The additional constraints on factor weights, reflecting
the unique characteristics of the application area under consideration, had a dramatic
impact on at least some of the warehouses. In four cases, warehouses that were originally
viewed as efficient lost that status as a result of explicitly taking into account the special
characteristics of three of the warehouse outputs used in the model.

Future research could involve a more sophisticated set of constraints on factor
weights, considering both input and output weights. This would require a better
understanding of the technology and economics underlying warehouse operations, as well
as the elicitation of factor weight constraints using experts in the field.

With regard to factor weights, another avenue of research could involve the impact
of introducing “standards™ into the model. This could be accomplished by selectively
adding DMUs (warehouses) to the basic set of DMUs being studied, where these
additional DMUs represent standards of excellence in some dimension of performance.
Golany and Roll provide a model that illustrates how this additional information could be

used to set bounds on factor weights,
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Within the framework of the existing Hackman-Frazelle model the
following additional questions could be examined:

O What 1s the impact of expanding the existing inputs to include
warehouse size?

O What additional types of equipment should be considered?

O What would be the impact of desegregating labor hours into indirect
and direct labor hours?

O What alternatives are there for measuring the amount of equipment
utilized by a warehouse?

Another direction for future research would be to significantly alter the basic
framework of the model. In particular, the outputs utilized by Hackman-Frazelle could be
replaced by more conventional measures of warehouse performance. Such measures
might include:

O Inventory turns per year

O Inventory accuracy

0O Return rates due to inaccurate shipment

O Total cases picked

O Service level, etc.

The mputs would continue to include measures of labor, equipment, and warehouse size.
The efficiency scores generated by a DEA analysis could then be regressed against a
variety of factors reflecting warehouse characteristics and utilization of “best practices,”

which are supposedly correlated with warehouse performance. This would provide a
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potentially more meaningful analysis of factors influencing efficiency than was carried

out in the original Hackman-Frazelle paper.
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Model 1: No Constraints on Weights

set DMU_set; # Sel of DMUs

set X # Set of Inputs

setY, # Sel of Outputs

set Factors; # Set of Inputs & Cutputs

param Data {DMU set, Factors}: # Data indexed by DMU & Factor

param o symbolic; # DMU whose efficiency is being maximized
varv {X}>=1; # Input weights indexed over the set X of inpuls
varu {Y} =1 # Output weights indexed over the set Y of outputs

maximize Efficiency : sum {j in Y} u[j]*Datalo, j|;
subject to Input_constraints: sum {i in X} v[i]*Datafo, i] = |;
subject to Output_constraints {k in DMU_set} : sum {j in Y} u[j]*Data[k.j] - sum {i in X} v[i]*Datajk. i

<=
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Data File for Model 1: No Constraints on Weights

seA DMU st =123456T8910111213 141516 17 1R 1920321 2223 24 25 26 3T 2R 29 30 31 32 33 34 35 36 37 38
3040 41 42 43 44 45 46 47 48 49 50 5] 52 53 54 55 56 57 58,

st Factors =RCLHBC FCPS A

param Data : RCLHBCFCPS A

1 4.17 434 396 2430 0 633 593

2 4.00400 500000 101 2817

3 370 200 9700 300 0 168 048

4 1.60 150 19 300 56 1054 315
5031480595874 90

6 4.08 513 2695 2205 0 317 4651

T 12.65 1584 63598 1628 BT 465 7847
8 0.40 574 2249 395 330 219 2669
9 1.86 508 2756 650 304 230 3145
10 0.90 968 4641 955 548 304 5083
11 0.23 306 1660 544 255 211 2075
12 0.45 196 568 164 110 220 1059
13 15.99 1112 4781 1261 6035 437 5749
14 0.95 244 1326 238 163 190 1694
15 0.50 484 2534 563 319 228 2795
16 0.86 528 2365 424 322 248 2780
17 0.33274 1745 38] 218 225 2023
18 13.95 1212 4679 1038 611 366 5386
19 0.97230 1248 211 151 213 1389
20 9.98 734 3891 T83 433 357 4409
21 0.69 1174 4856 1019 634 337 3617
22 700 158 188 120 0 468 120

23 R8T 822 248900 263 44

24 10,13 428 887 213 83 541 566
25 2.57 128 422 211 70 3135 590

26 416218 422 211 70 315 580

27 054278198 0421 152

23 0592310238 0489 187

20 054 18651790415 143

30 10665811 2550 158 897

31 062221062200 482 172

32 1.33 100 856 426 0 258 1047

33 02714 4.6 104 0 382 82

3 7.61 1286 17131 34 69 485 16078
35 07570 1212 82 0 140 1044

36 1.50 92 336 357 7273 550

37 16.50 612 179 581 469 1658 600
38 246112 589512 11 298 874

39 14080319326 7288 512

40 330 140 763 611 14 294 1091
41 3.00232 985 836 37 348 1275
42 1.50 240 3000 00 332 2123

43 1.07114 0 136 7 885 147

44 2.29 3360703 37 1424 691

45 1.53 214 0476 25 1012 468

46 1.11 114 0237 12972 228

47 1.51 314 0 490 20 1133 482

48 108 118031917923 313

49 (.50 64 667 152 0210 570

30 4,20 1164 20000 0 0 255 127445
51 07248 6 120 24 431 106

52 200160331648 1312 295

53 0113027000103 176

54 07080 2641 139092 2748

55 1.30 250 5225 220 55 110 3448
36 1.80 182 2500 630 0 304 3112
57 2.60 158 1954 353 47 270 2090
58 320342 164 432 0444 336

setX =RCLH,
set Y =BCFCPSA:
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Results for Model 1: No Constraints on Weights

DMU

L=l - =

EFF
1.00
0.36
1.00
048
1.00
100
0.51
0.78
0.78
0.78
1.00
0,64
0.46
0.70
0.82
0.69
0.97
0.41
0.64
0.49
0.98
.13
0.09
0.18
0.49
0.29
0.87
1.00
1.00
0.70
0.99
0,77
1.00
0.56
0.55
0.57
0.48
0.59
0.57
0.56
0.63
0.35
0.46
0.55
0.57
0.33
0.53
0.62
0.74
100
0.50
0.43
0.71
L.00
089
0.90
.60
0.25

Vie Vin Uge Ure Ur Ug U,
0.17756 0.00060 000000 0.00041 0.00000 0.00000 000000
0.11347 0.00137 0.00007 0.00000 0.00106 0.00000 0 00000
0.13372 0.00253 0.00009 0.0004]1 0.00169 0.00000 0.00000
0.3504%9 0.00293 0.00000 0.0009 000171 0.00009 000000
0.00000 002083 0.00000 0.00000 0.00350 0.00076 0.00000
0.14079 0.00083 0.00002 0.00038 000000 0.00000 0.00002
001918 0.00048 0.00001 0.00009 0.00030 000000 000000
250000 000000 0.00035 000000 0.00000 000000 000000
0.06886 0.00172 0.00005 0.00033 0.00107 000000 0.00000
0.69047 0,00039 0.00017 000000 0,00000 0.00000 0.00000
0.12727 0,00317 0.00009 000062 0,00199 0.00000 0.00000
0.48547 0.00399 0.00025 0.00000 0.00360 0.00000 0.00000
0.00000 0.00090 000002 0,00009 0,00045 0.00000 0.00000
0.14221 0.00354 000011 0.00069 0,00222 0.00000 000000
0.22344 000184 0.00011 0.00000 0.00166 0.00000 000000
0.19243 000158 0.00010 0.00000 000143 0.00000 0.00000
038752 0.00318 0.00020 0.00000 0.00287 0.00000 0.00000
0.02264 0.00056 0.00002 0.00011 0.00035 0.00000 0.00000
0.14919 0.00372 0.00011 0.00072 0.00233 0.00000 0.00000
0.000H) 0.00136 0.00002 000013 0.00068 0.00000 0.00000
144928 0.00000 0.00020 000000 0.00000 000000 000000
0.00000 000633 0.00013 0.00000 000108 0.00023 0.00000
0.04893 0.00069 0.00003 0.00000 0.00000 000006 0.00000
0.00000 0.00234 0.00004 000022 0.00117 0,00000 0.00000
0.00000 0.00781 0.00014 0.00075 0.00391 0.00000 0.00000
0.00000 0.00459 0.00008 0.00044 0.00229 000000 0.00000
1.50739 0.00689 0.00000 0.00370 0.00000 0,00027 0.00019
1.27852 0.01068 000000 0.00350 0.00623 0.00034 0.00000
(0.23832 0.04841 0.00000 0.00206 001351 0.00115 0.00108
0.58757 0.00380 0.00023 0.00201 0.00174 0.00000 0.00000
0.00000 0.04545 0.00083 0.00293 0.01643 0.00069 0.00000
0.43149 0.00426 0.00017 0.00147 0.00128% 0.00000 000000
3.40457 000577 0.00000 000410 0,00000 0.00150 0.00000
0.09855 0.00019 0.00003 0.00000 0,00011 0.00000 0.00000
0.56064 0.00828 0.00037 0.00016 0,00000 0.00065 0.00000
041519 0.00410 0.00016 0.00142 0,00123 0.00000 0.00000
0.00000 0.00163 0.00003 0.00016 0.00082 0.00000 0.00000
0.19041 0.00475 0.00014 0.00092 0.00297 0.00000 0.00000
0.45661 0.00451 0.00018 0.00156 0.00135 0.00000 O.00000
000000 0,00714 0.00013 0.00068 0.00357 0.00000 0.00000
0.18900 000187 0.00007 000065 0.00056 0.00000 0.00000
0.52934 0.00086 0.00016 000000 0,00000 0.00023 0.00000
0.79166 0.00134 0.00000 000095 0,00000 0.00035 0.00000
0.29022 0.00100 0.00000 000066 0,00000 000006 0.00000
0.44129 0.00152 0.00000 000100 0,00000 0.00009 0.00000
0.76736 0.00130 0.00000 0.00092 0.00000 0.00034 0.00000
0.48970 0,00083 0.00000 0.00059 0.00000 0.00022 0.00000
0.67301 000231 0.00000 000153 0.00000 0.00014 0.00000
116805 000650 0.00034 0.00302 0.00000 0.00024 0.00000
0.15394 0.00030 0.00005 0.00000 0.00000 0.00000 0.00000
0.68912 0.01050 000000 0,00272 0.00741 0.00000 000000
0.29970 0.00250 0.00000 0.00082 0.00146 0.00008 0.00000
6.38058 0.00396 0.00165 0.00000 000000 0.00259 000000
1.29263 0.00119 0.00028 0.00000 0.00000 0.00000 000009
0.57802 0.00053 0.00013 0.00000 0.00000 0.00000 0 00004
0.30950 0.00243 0.00000 0.00092 0.00039 0.00000 000010
0.15350 0.00380 0.00009 0.00072 0.00236 0.00000 0.00003
0.20995 0.00096 0.00000 0.00052 0.00000 0.00004 000003

A-4



Appendix B

Model 2: Constraints on Output Weights

B-2 Model 2
B-3 Data File
B-4 Results

B-1



Model 2: Constraints on Qutput Weights

set DMU set;
set X:
set Y

set Factors:

param Data {DMU_set, Factors}:

param o symbolic;

parama {Y};

param b {Y};

varv (X} >=0;

varu {Y}) >=0;

maximize Efficiency : sum {j in Y} u[j]*Datafo, j];

# Set of DMUs

# Set of Inputs

# Set of Cutputs

# Set of Inputs & Cutputs

# Data indexed by DMU & Faclor

# DMU whose efficiency is being maximized

# CoelTicients of output weighis for first constraint
# on output weights

# CoelTicients of output weights for second constraint
# on output weights
# Inpul weights indexed over the set X of inpuis

# Output weights indexed over the set Y of oulputs

subject to Input_constraints: sum {i in X} v[i]*Datajo, i] = 1;

subject to Output_constraints {k in DMU_set} : sum {j in Y} u[j]*Datakj] - sum {i in X} v[i]*Datalk. i|

<={)

subject to First_constraint: sum {j in Y} u[j] * a[j] >= 0, # First constraint on outpul weights

subject to Second_constraint: sum {j in Y} ulj] * bljl >=0:  # Second constraint on output weights
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Data File for Model 2: Constraints on Output Weights

st DMU st -=123456TE91011 121314151617 18192021 2223 24252627228 293031 3233 M 35363738
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58:

set Factors ;== RCLHBC FC P 5 A:

param Data : RCLHBC FCPS A

1 417 434 396 2430 0 633 595

2 4,00 404 5000 00 101 2817

3 3.70 200 700 300 0 168 9048

4 1.6 150 19 300 56 1034 315

S 0348059587490

6 408 513 2695 2205 0 317 46351

T 12.65 1584 6598 16218 BRT 465 TR4T
8 0.40 574 2249 395 330 219 2659
9 1.Bo 308 2756 650 394 230 3145
11 0.9 968 464] 935 548 304 5085
11 0.23 306 1660 344 255 211 2075
12 0.45 196 968 164 110 220 1059
13 1599 1112 4781 1261 605 437 5749
14 0.25 244 1526 258 163 190 1694
15 0,50 484 2534 563 319 218 2795
16 0.B6 528 23635 424 322 248 2780
17 0.33 274 1745 381 218 225 2023
18 13.95 1212 4679 1058 611 366 5386
19 0.97 230 1248 211 151 213 1389
20 9.9% 734 3891 T8I 435 357 4409
21 069 1174 4856 1019 634 337 5617
22 T.UH) 158 188 120 0 468 120

23 BRTR2I2248900 263 44

24 10.13 428 887 213 83 541 566
25 2.57 128422 211 70 315 590

26 4.16 218422 211 70 315 580

27 0.5427 8 198 0 421 152

18 0.5923 10 238 0 489 187

29 054 1865 179 0 415 143

M 1.06 65 811 255 0 158 897

31 06222 10,6 220 0 482 172

32 1.33 100 856 426 0 258 1047

33 037 14 4.6 1040 382 82

34 761 1286 17131 34 67 485 16078
35 0.7570 1212 82 0 140 1044

35 1.3092336357 7273 550

3T 1650612 179 581 469 1658 600
3% 246112 589 512 1] 298 874

39 1.40 80 319 326 7 248 512

40 330140 T3 611 14 294 1091
41 3.00 232 985 836 37 348 1275
42 1.50:240 30000 0 332 2125

43 1.07 1140 156 7 885 147

44 2293360 703 37 1424 691

45 1.53214 0 476 25 1012 468

46 1.11 114 0237 12972 228

47 1.51 314 0 4%0 26 1133 482

48 108 118031917923 313

49 0.50 64 667 152 0 210 570
5004.20 1164 20000 0 0 255 12746
51 0.7248 6 120 24 431 106

52 2,00 160 3 316 48 1312 295

53 Q.11 5027000 103 176

54 0.70 80 2641 139 092 2748

55 1.50 250 5225 220 55 110 5448
56 1.80 182 2500 630 0 304 3112
57 1.60 158 1954 353 47 270 2090
58 3.20 342 164 432 0 444 136

st X:=RCLH:
s Y =BCFCFPSA:

param:

L=

a
1

-1
]
]

;.,.:.ar-.—.{-qg

] 0:



Results for Model 2: Constraints on Qutput Weights

DMU

Sy e bl b =

10
11
12
13
14
15
16
17
13
19
20
21
22
23
24
25
26
27
28
29
30
31
32
i3
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
35
36
57
58

EFF

0.24
0.36
1.00
0.36
1.00
0.31
0.18
0.78
0.43
0.78
1.00
0.56
0.15
0.46
0.80
0.55
0.94
0.14
0.40
0.18
0.98
0.13
0.09
0.09
0.1%8
0.11
0.63
0.87
0.92
0.42
0.89
0.39
1.00
0.56
0.55
0.26
0.12
0.28
0.28
0.26
0.24
0.55
0.40
0.29
0.31
0.45
0.32
044
0.54
1.00
0.39
0.38
0.71
1.00
0.89
0.53
0.37
0.11

vli':_' VI.H l-IIIF.IL' UFL’ l|-—:I'I" Uﬁ. U.-'n.

0.11147 0.00123 0.00006 0.00006 0.00000 0.00011 0.00000
0.11347 0,00137 0.00007 0.00000 0,00000 0.00000 000000
0.15641 0.00211 0.00010 0.00010 0.00010 0.00000 O.00000
0.30680 0.00339 0.00017 0.00017 0.00000 0.00029 0.00000
080968 0.01560 0.00000 0.00000 0.00000 000114 0.00000
0.20426 0.00032 0.00006 000006 0.00000 000009 0.00000
0.06393 0.00012 0.00002 0.00002 0.00002 0.00003 0.00000
2.50000 0.00000 0.00035 0.00000 0.00000 0.00000 0.00000
0.35469 0.00067 0.00010 0.00010 0.00010 000015 0.00000
0.69047 0.00039 0.00017 0.00000 000000 GOO00O 0 00000
1.23778 0.00234 000036 0.00036 0.00036 0.00053 0.00000
1.21928 0.00230 0.00036 0.00036 0.00036 0.00052 0.00000
0.03011 0.00047 0.00002 0,00002 0.00002 0.00003 000000
0.70881 0.00134 0.00021 0,00021 0.00021 0.00030 000000
105777 0.00097 0.00023 0.00000 0.00000 0.00000 000008
061533 0.00089 0.00000 0.00000 0.00000 0.00025 000017
1.57159 0.00176 0.00039 0.00000 0.00000 0.00065 0,00006
0.03057 0.00047 0.00002 0.00002 0.00002 0.00003 0,00000
0.71206 000134 0.00021 000021 0.00021 0.00030 0.00000
0.04685 0.00073 0.00003 0.00003 0.00003 0.00005 0.00000
1.44928 0.00000 0.00020 0.0000:] 0.00000 0.00000 0.00000
0.00000 0.00633 000013 0.00000 0.00000 0.00023 0.00000
0.04893 0.00069 0.00003 000000 0.00000 0.00006 0.00000
0.00000 0.00234 0.00005 000005 0.00005 0.00007 0.00000
0.00000 000781 0.00015 0.00015 0.00015 0.00024 0.00000
0.00000 0.00459 0.00009 0.00009 0.00009 0.00014 0.00000
0.00000 0,03704 0.00072 0.00072 0.00072 0.00115 0.00000
0.00000 0.04348 0.00085 0.00085 0.00085 000135 0.00000
0.00000 0.05556 0.00108 0.00108 0.00000 0.00173 0.00000
048392 0.00749 0.00032 0.00032 0.00032 0.00053 0.00000
0.00000 0.04545 0.00089 0.00089 0.00000 000141 0.00000
0.34742 0.00538 0.00023 0.00023 0.00023 0.00038 0.00000
2.35360 0.02604 0.00127 0.00127 0.00000 0.00226 0.00000
0.11372 0.00010 0.00002 0.00000 0.00000 0.00000 0.0000]
0.56064 0.00828 0.00037 0.00016 0.00000 000065 0,00000
0.34194 0.00529 0.00023 0.00023 0.00023 0.00037 0.00000
0.00000 0.00163 0.00003 000003 0.00003 0.00005 0.00000
0.00000 0,00893 0.00017 0.00017 0.00017 0.00028 0.00000
0.37898 0.00587 0.00025 0.00025 0.00025 0.00041 000000
0.00000 0.00714 0.00014 000014 0.00014 0.00022 0.00000
0.15169 0.00235 0.00010 0.00010 0,00010 0.00016 0.00000
0.52934 0.00086 0.00016 000000 0.00000 0.00023 0.00000
042897 0.00475 0.00023 0.00023 0.00000 0.00041 0.00000
0.35406 0,00056 0.00010 000010 0.00000 0.00016 0.00000
0.25658 000284 0.00014 0.00014 000000 0.00025 000000
042173 0.00467 0.00023 0.00023 0.00000 0.00040 0.00000
0.49767 0.00079 0.00014 000014 0.00000 0.00022 0.00000
0.41921 0.00464 0.00023 0.00023 000000 0.00040 0.00000
166174 0.00264 0.00047 0.00047 0.00000 0.00073 0.00000
0.15394 0.00030 0.00005 0.00000 0.00000 0.00000 0 00000
0.72824 0.00991 0.00044 0.00044 0.00044 0.00075 0.00000
(1.26525 0.00293 0.00014 0.00014 000000 0.00025 0.00000
638058 0,00596 0.00165 0.00000 000000 0.00259 000000
1.29263 0.00119 0.00028 0.00000 0.00000 000000 000009
(0.57802 0.00053 000013 0.00000 0.00000 0.00000 0.00004
0.15733 0.00394 0.00000 0.00000 000000 0.00022 0.00015
0.19816 0.00307 0.00013 0.00013 0.00013 00022 000000
0.14319 0,00158 0.00008 0.00008 000000 0.00014 0.00000
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