
 

  ETM OFFICE USE ONLY 
Report No.: See Above 
Type: Student Project 
Note:  This project is in the filing cabinet in the ETM department office. 

 
 
 
 
 
 
 
 
 
 
 
Title:     Concurrent Software Development-A Survey of the State of 
Concurrent Engineering in Software Development 
 
Course: EMGT 510 NPD 
Term:  Spring 
Year:     1997 
Author(s): L. Harding 
 
Report No: P97014 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Abstract: Concurrent Engineering is a popular form for improving the 
new product development process in hardware design This paper addresses 
the question, "Why has software-engineering process not benefited from 
CE?" This paper attempts to address the question through a survey of 
software developers and research into the software development process. 
 



Concurrent Software Development-A Survey of 
the State of Concurrent Engineering in Software 

Development 

L Harding 

EMP-9714 



MUIR LEE HARDING 

INDIVIDUAL PROJECT REPORT 

MAY 28, 1997 

CONCURRENT 
SOFTWARE 

DEVELOPMENT 
A SURVEY OF THE STATE OF 

CONCURRENT ENGINEERING IN 

SOFTWARE DEVELOPMENT 



TABLE OF CONTENTS 

Table of Contents ............................................................................................................................ i 

Introduction ................................................................................................................................... 1 

Background .................................................................................................................................... 1 

Concurrent Engineering ................................................................................................................. 1 

Software Development ................................................................................................................... 2 

The Capability Maturity Model and the Personal Software Process ............................................. 3 

Methodology .................................................................................................................................. 3 

Survey Design ................................................................................................................................. 3 

Survey Distribution ........................................................................................................................ 3 

Results and Discussion .................................................................................................................... 4 

Demographics ................................................................................................................................. 4 

Questionaire ................................................................................................................................... 5 

Conclusion ..................................................................................................................................... 6 

Appendix A - Survey Form ........................................................................................................... ii 



CONCURRENT SOFTWARE 
DEVELOPMENT 

A SURVEY OF THE ST A TE OF CONCURRENT ENGINEERING IN 

SOFTWARE DEVELOPMENT 

INTRODUCTION 

Software is among the largest and fastest growing industries, with an estimated market value 
of $350 billion by 1998. Since its genesis in the 50s and 60s, the industry has been fairly stable 
with regard to process. The early description of the Waterfall Model is still widely applicable 
today, and is still cited as the most commonly used process framework. This is in contrast with 
the mechanical and electrical design industries that have shown widespread and rapid process 
changes over that last decade. 

Concurrent Engineering (CE) is a popular form of process rejuvenation in the hardware 
design industry. Firms successfully implementing CE techniques realize significant improvements 
in quality and time to market. Improvements in these benchmark areas often directly improve 
the firm's financial performance. 

The question thus arises, "Why has software-engineering process not benefited from CE?" 
This paper attempts to address the question through a survey of software developers and research 
into the software development process. 

BACKGROUND 

CONCURRENT ENGINEERING 

The interpretations of 'Concurrent Engineering' are varied and rich. This paper addresses 
only two of those definitions: 

1. Concurrent Engineering as a description of the systems and processes that facilitate the 
coordinated activities of a group. In this definition, it is assumed that by coordinating 
effort, an improvement in efficiency will be realized. 

2. Concurrent Engineering as an objective which is characterized by maxuruzmg the 
amount of simultaneous activity in a project. This definition assumes that any duplication 
of effort caused by the parallel activity is offset by gains in time to market. 

In general, CE implementations are recognized as sharing some common characteristics: 

1. Cross-functional, autonomous teams. 

1 



CONCURRENT SOFTWARE DEVELOPMENT 

2. Project ownership. 

3. Well defined requirements. 

Hardware engineering processes have historically been defined based on the context. It is very 
difficult to define mechanical design process, and very few concise descriptions have been offered. 
Processes that exist to day have evolved over a long period, and generally rely heavily on the 
individual engineer. 

SOFTWARE DEVELOPMENT 

Developing software appears to be different than developing hardware - unfortunately, the 
importance differences have been difficult to identify. For the most part, software developers of 
the 90's employ the same process that developers of the 70's and 80's used. It is unusual that a 
relatively young industry would not show improvements that are more significant in the realm of 
process. 

In most professions, competent work requires the disciplines use of established practices. The 
use of plans and procedures brings order and efficiency to any job and allows increased focus on 
producing superior product. Unfortunately, software professionals today often do not plan or 
track their work, and software quality is rarely measured. 

There are several possible explanations for the relative stagnation of software development 
processes. Two of them are: 

1. As a product of the modem era, software development processes were done right the first 
time. Having no historical baggage to carry forward, software developers were free to 
define the processes that were most efficient, and these processes have stood the test of 
time. 

2. Software development processes are distinctly different from hardware development 
processes, so rapid changes in one do not correlate with changes in the other. 

3. Software engineering doesn't require process to be effective. 

The answer is probably a combination of all three. In the early days of the computer, 
programmers were constrained by the power of the machines for which that constructed code. 
Because of the extreme cost associate with errors in software at this stage, the processes that 
developed them were very closely considered. The result was the adoption of a number of formal 
development models. Notable among them was the Waterfall model, which is still commonly 
used today. 

Because of the high degree of intangible deliverables in software development, it is more 
difficult estimate schedules and measure progress. In addition, software systems tend to dwarf 
their mechanical counterparts in informational degrees of freedom. The combined effect is that it 
is difficult to fully understand the entire process. 

2 



CONCURRENT SOFTWARE DEVELOPMENT 

THE CAPABILITY MATURITY MODEL 
AND THE PERSONAL SOFTWARE PROCESS 

One of the most promising developments in Software development process is the Personal 
Software Process (PSP). The PSP is a designed and measured framework that helps software 
engineers plan and track their work and product high-quality products. PSP can be applied to 
many parts of the development process, including small-program development, requirements 
definition, document writing, systems test, and maintenance and enhancement of large software 
systems. The PSP is directed toward the activities of the individual developer rather that the team 
or organization. It developed from a desire to project the beneficial characteristics of the Software 
Engineering lnstitute's Capability Maturity Model to small teams or individuals. 

The PSP is distinguished from other SWD frameworks in that it does not require a full 
understanding of the global process - only the part in which the individual operates, and the 
interfaces with the global process. By reducing the scope of the problem, PSP allows individuals 
to focus attention on their contribution to the process, but not the process itself. 

PSP implementations have so far shown moderate success in enhancing productivity, and 
exceptional results in increasing the reliability of estimating and scheduling. Since the PSP is new, 
only a small body of case-study data is available. In addition, SEI is in the process of reviewing 
and improving the initial guidelines based on feedback received to date. 

The PSP is interesting in terms of CE because in provides the enabling infrastructure at the 
level of the individual engineer. By installing a fine-grained, individually maintained process­
tracking framework, PSP can provide feedback about the success of CE. 

METHODOLOGY 

To determine the extent and character of concurrent engineering in software development, a 
survey was created and distributed at random via the Internet to software professionals around 
the world. The survey was implemented as an HTML form on the author's web site, and survey 
results were automatically accumulated and analyzed in real-time. 

SURVEY DESIGN 

In designing a survey for Internet distribution, the focus was on compactness. The feeling was 
that a shorter, more direct survey would elicit a much larger number of responses. In that light, 
the survey was limited to five general questions regarding the collaboration between functional 
groups in the production of important deliverables. A more rigorous and robust survey would be 
an interesting follow-up to this effort. 

SURVEY DISTRIBUTION 

There were several interesting consequences of the electronic distribution of the survey. First 
among them was that the distribution was not restricted to a known set of candidates. The 
respondents could have been anyone from a 10-year-old to seasoned software professionals. 
Because survey submissions were anonymous, the author did not attempt to filter the responses. 
However, two precautions were taken to minimize the 'noise' associated with bogus responses. 

3 



CONCURRENT SOFTWARE DEVELOPMENT 

First, no general announcement of the survey was posted to UUNET. Rather, notification of the 
survey was sent to a number of moderated computer science and programming email discussion 
lists under the assumption that the members of these lists are actively involved in the 
development of software. 

A second consequence of the electronic posting was the large number of respondents, and 
short turn-around time. Within 48 hours of the initial survey announcements, 115 responses had 
been received. At the time of the writing of this paper, survey results are continuing to arrive at a 
rate of about two per day, and the total survey tally has reached 171 responses. 

The major third consequence of the electronic distribution was the ability to determine the 
source of the survey response. By recording the sending site, and requesting a 'cookie' from the 
users browser, it was possible to reduce the possibility of multiple submissions from one person. 
In addition, since the survey tally was automated via Perl CGI scripts, the results could be 
queried in real-time. To avoid influencing the survey results, tally information was not provided 
to survey participants. 

RESULTS AND DISCUSSION 

DEMOGRAPHICS 

Of the 171 survey responses, 23 were incomplete or duplicates. The demographic data for the 
remaining 148 responses are shown in the figures below. The majority of respondents (55%) 
appear to work for medium or large firms (50+ employees) with small development 
organizations (51% with 1-5 SWD personnel). In addition, the majority of the respondents 
described their role in SWD as Engineering (65%), and their firms were located in the United 
States (85%). 

These results are not in good agreement with the general demographics of the software 
development community. Of the many possible explanations for this, it appears likely that the 
survey sample was not randomly distributed. In future surveys, it might be desirable to find a 
more 'random' method of survey notification. 

At the time of this writing, no attempt has been made to examine the fine-grained 
relationships between the demographics and the results of the questionnaire. It would be desirable 
to do so in a subsequent work. In particular, it would be desirable to investigate whether the 
various functional groups have different views on the use of CE. 

4 



CONCURRENT SOFTWARE DEVELOPMENT 

201+ 

21% 

34% 

1-5 

6-10 
17% 

~ 11-50 

18% 

Figure 1: Number of employees in the firm 

TD 
2% 

QA 

7% 

PS 
13% 

Other Management 

3% 

Marketing 
...-rTI~-- 5% 

\Engineering 
65% 

Figure 3: Responant 's role in SW'D 

11-50 

29% 

201+ 

5% 

1-5 
-51% 

Figure 2: Number of employees in SW'D 

India 
2% 

UK 
8% 

Other 

5% 

USA 
85% 

Figure 4: Firm 's location 

QUESTIONAIRE 

The survey results indicate that there is a belief that significant collaboration occurring across 
many functions of software development organizations. The most common interaction appears 
to be between marketing and engineering in the production of specifications. 

The least common area of interaction is between quality assurance and product support in 
the development of testing plans. This is disturbing, but may be explained by the demographic 
data. A large number of respondents were not involved in the production of consumer software, 
and therefor may not have had a Product Support role in their organization. This flaw in the 
survey could have been avoided by having respondents identify the roles present in their 
firm/ organization. 

If it is true that QA and PS roles do not often collaborate in developing testing strategy, then 
it is an area for potential improvement. As direct reception points for the 'Voice Of the 
Customer,' (VOC) Product Support personnel may provide valuable, real-time awareness of 
customer requirements. This information is directly applicable to the development of test 

5 



CONCURRENT SOFTWARE DEVELOPMENT 

strategies since it will effect the usage of the product once delivered. It is also relevant to the 
development of specification for subsequent products. 

Table 1: Summary of the survey results 

Statement Level of Agreement 

Marketing and Engineering work together to develop specifications for 1.9 
new products. 

Quality Assurance participates in the specification of new products. 
3.2 

Product (Customer) Support participates in the specification of new 
3.3 

products. 

Product (Customer) Support participates in the development of Quality 
3.7 

Plans. 

Software design activities occur in parallel with specification activities. 
2.9 

CONCLUSION 

At its root, Concurrent Engineering is quest for efficiency - get it done quicker, cheaper and 
with better quality. Interestingly, software development has been driven by these factors almost 
since its inception. Until recently, limited computing power required software developers to 
optimize their work for speed, size and resource requirements. 

To achieve good results with CE, software development organizations need to raise awareness 
of the new bottleneck - the company's ability to execute. As computer hardware was in the past 
decades, the corporate infrastructure is the 90s. A good software development process, and the 
systems to support it, is as important as good product specification, design and marketing. This is 
because the scope of the organization allows alignment of activities that have heretofore been 
considered independent. 

Management, Marketing, Engineering, Quality Assurance and Product Support have 
significant interest in all stages of development, and must synchronize their activities. By doing so 
the organization can maximize its opportunities to catch errors while they are 'cheap,' and 
accelerate schedule and defect reductions. 

6 



CONCURRENT SOFTWARE DEVELOPMENT 

BIBLIOGRAPHY 

1) M. C. Paulk at al., The Capability Maturity Model· Guidelines for Improving the 
Software Process, Adison Wesely, Reading, MA, 1995. 

2) W. S. Humphrey, Introduction to the Personal Software Process. Addison-Wesley, 
Reading, MA, 1997 

3) P. Ferguson, W. S. Humphrey, S. Khajenoori, S. Macke & A. Matvya, Results of 
Applying the Personal Software Process, Computer, pp.24-31, May 1997. 

4) R. Beltramini, Concurrent Engineering: Information Acquisition in New Product 
Development, Intl. J. Technology Management, Vol. 11, No. 112, 1996. 

5) B. Boehm & P. Bose, Humans and Process Frameworks: Some Critical Process 
Elements. 

6) J. D. Blackburn, G. Hoedemaker & L. N. Van Wassenhove, Concurrent Software 
Engineering: Prospects and Pitfalls, IEEE Transactions on Engineering 
Management, Vol. 43, No. 2, May 1996. 

7 



APPENDIX 


