ETM

ENGINEERING & TECHNOLOGY MANAGEMEN

Title: Software Engineering and TQM.
Course:
Year: 1994

Author(s): F.Rivera

Report No: P94064

ETM OFFICE USE ONLY
Report No.: See Above
Type: Student Project
Note: This project isin the filing cabinet in the ETM department office.

Abstract: Quality cost, quality management, quality assurance, quality
control, quality improvement, personnel for quality, employee involvement,
and statistical process control are al issuesin TQM that can be implemented
in Software Engineering Organizations. In this research, the author tries to
show different techniques, methodol ogies and tools that today are in use by
many organizations to address the necessity of excellence in software
development. In order to organize the work, the author has divided it in three
sections. The section Team Building presents a framework to help
Information System Managers |ISM) to build a software team. The second is
a series of techniques and methodol ogies that can be adopted to Fix the
Process through standardization, continuous improvement, bench-marking,
statistics process control, and quality assurance. The third, the Voice of the
Customer, is an integration of software development life cycle and customer
satisfaction.

Software Engineering and TQM
Fernando E. Rivera

EMP-P9464

il e

 RESEARCH PAPER

EMGT 510 TQM - I
SOFTWARE ENGINEERING AND TQM

PORTLAND STATE UNIVERSITY

MARCH 8, 1934

FERNANDO E. RIVERA

Software Engineering and TQM

Introduction

Quality cost; quality management, quality assurance, quality control, quality improvement,
personnel for quality, employee involvement, and statistical process control are all issues in

TQM that can be ﬁhplerhented in Software Engineenng Ofganizatians.

In this research I wall try to show different techniques, methodologies and tools that today
are in use by many organizations ta address the necessity of excellence in software

‘development.

In order to org‘anize the work [had drade it in three sections. The ﬁrét section Team
Building preserité a framework to help Information System Managers (ISM) to build a
soﬁ,waré teamn. The second a series of techniques and methodologies that can be adopted to
Fix the Process through stmdérdization, confnuous imp:ovement, benchmarlang statistics
process control, and guality assurance. The third The Voice of The Customeris an

integration of software development's kife cycle and customer satisfaction.

Team Buildiﬁg

Every project should start with an inforral but detailed statement of known requirement.
Rethig and Simonds? suggest to divide this statement in four parts: 1) Project title, the name
the entire organization will use to describe the project; 2) Purpose, a concise statement of
the specific goals of the project, 3) Stages, a numbered list of the development stages the
project will go through on its way to completion (schedule) and 4) The team, people

assigned to the project teatr, with role assignment.

The first two statements have only the purpose of distinguish the project from others within
the organization and generally do not represent a major achivity. The third refers to the
common belief that small projects are easier to manage than big projects and is a general
practice in the software industry (top-down decompué'rtidn). However, the last one

represent one of the major problems to managers: How to build the team? |

Constantme? imntroduces a theoncal framework that defines four approaches to build a
technological team: Closed, Random, Open, and Synchronous. They are based, respectively,
on tradtional hierarchy of authority, on creative independent initiative, on adaptive
collaboration and communication, and on alignment mﬂa a shared vision. This framework

can provide a tool for building teams n software organizations.

! Rettig, M. and Simonds, G., " A Project Planming and Development Process for Siall Te&ms“
Commmications of ACM, October 1993, v36, nl0, pd3. ‘ -
2 Constantine, L., "Building structured open teams to work", Soffware Development | QQI
FProceedings. Miller Freeman, San Francisco, Californda, 1991,

Closed

Such organization 15 structured as pyramid or hierarchy with distinct and well-defined roles
specified for each position in the hierarchy. People assume that someone has to be in
charge of others and that decision must be made by whoever is in charge. Information is
controlled and channeled along lines of authonty and decision made by managers. Corporate
or collective interests come first. Individuals are expected to demonstrate loyalty and
deferred to the group. Insubordination is not tolerated, and opposition or criticism may be
seen as disloyal Within this scheme, standards and rules of operation promote continuity

mstead of innovation. The advantages are in stability and predictable performance.

Rettig and Simonds definition for a hierarchical project team conéistat rmimum of three
roles: 1) Implementer, a programmer who writes the program code; 2}; Domain specialist, a
specialist in the application domain and 3) Technical reviewer, a programmer who setves to
review technical aspects of the implementation. In large project, two or more fembers are
designated for each role. Besides the above role, onc: member might play the rple of team
leader or someone can be nominated to play solely this position. The team leader has the
following responsibilities:

Facilitator: Schedule and lead team meetings.

Archivist: Take minutes of team's meetings and maintain project's documentation.

Manager: Maintain a char of progress.

Contact: Serve as contact pomnt between the 'prajf,ct team and the rest of the

organization.

LR

Randam

The random approach is the antithesis of the closed. In random the team might rely on
individual mitiative as the basis of decisions. The freedom of the individual to create and act
independently is considered more important than group nterests. The random organization

excel at creative invention but are not highly stable or efficient.

Open

The open approach has characteristics from the closed and random. It is based on adaptive
collaboration, mtegrating innovation with stability and individual with coﬂecﬁve mterests
through negotiation and discussion. This is a mode] which roles and responsibilities are
flexibly shared. Because groups based on this approach share information so freely and
combine diverse approaches, they excel at so}vihg complex problems. However, théy can

waste too much time 1 fruitless debate.

Synchronous

The synchronous approach is the opposite of the open. It is based on haymonious and effortless
coordination through the alignment of members with a common vision that reflect the collective gosls
and methods of reaching those goals. In ‘such groups, stmooth, efficient operation with quiet
unanimity is all important. Synchronous groups can be efficient in smoothly performing established

procedure, yet they tend not to be highly responsive or adaptive to changing requirements.

-

Project teams can be based on any of the above approach, but which is the idesl for software

development project?

Software projects typically involve a combination of cormplex problem solving with the need fora
certain amount of innovation that traditionally has been addressed by individual programmers or
hierarchical teams. Zahmser® think that today it is necessary to make a paradigm shift from expert
knowledge worker performing fairlyindependently to produce modular system component to cross-
functional teams of vatious system experts working together to produce a consensus system solution
to & jointly defined user-problem set. Collaborative teamwork and consensus engineering have many
characteristics that make them appealing as the basis for the sofiware development. The Open
approach team seems o be the in advantage to share and utilize complex information and integrating
the contributions of all team's members into a single, practical high-quality solution. Constantine
proposes a hybrid named 'structured open' that combinedosed (hierarchical) elements and open
ones with some of random teamwork. It uses hierarchical structures to promote flexibility along with
more efficient group jzioblem solving. For high performance certain key group roles are identified, but
instead of to be assigned permanently to & specific membet, these ate collectively shared by the
entire team and rotated atmong the members. In this way the model promotes consensus budding with

high level of participation and the diffusion of sidll among the members.

Choosing the team membhers

In an organization pursuing excellence the members need to be cormitted, focuses on the

custamer able to commurnicate and dedicated to continuous improvement. Programmers

- -

3 Zahniser, Richard A, "TQM for Technical Teams", Commmications of ACM, October 1993, ¥36,
nlf, p. 115.

rarely make the hest documents or trammers. Tramers usually do not like to program.
Programrers rarely make good managers, and good managers are often pretty terrible

programmers.

Depending of the needs and ohjectives of the organization different project teams can be
build. Managers have to identify potential strength and weakness of the members and

combine with the teatn model to achieve the highest performance.

People who do best in tactical teams (closed) have been described as loyal, committed and
action oriented. They have a strong sense of urgency and respond well to leader ship.
People who work best within the creative environment of a breakthrough (random) team
are mdependent thinker, often artistic or intellectual They are persevering self-starters who
do not need orders to get going or close supervision to keep going. |

People who thrive in the collaborative consensus-building of prohlem{olving teams (open)
are practical-minded but sensitive to people-issues. They have integrity and are seen as
trustworthy by peers, exhibiting intellicence coupled with good interpersonal kil

People that fitin synthronous teams are intuitive, somewhat introverted, yet people-
sensitive. They are good at linking the large picture to specific action and work with quiet

efficiency.

Fix the Process

Pitman estimate that poor quality cost 20%-50%% of operating expenses. This mcludes the
costs of rework, paperwork, handling complains, failure-related costs, and lost future
business. He says too that fixes that are necessary to make to correct requirements'
definttion errors frequently cost 100 times more to correct after software is installed that
they would have if the requirements’ definition had been defect-free. Costs of delwernng

quality include prevention costs, detection costs, and correction-before-installation costs.

Eight different techniques and methodologies are presented to address problems of quality
cost, standardization, continuous improvement, produc‘dﬂty,;ahd cultural change. Each one
has #ts one's strength and weakness and can be applied to address more than nne'pmblem

or in combination. The implementation of them generally will be umque to eac_h organiZaﬁon.

‘Support Teams (ST)

ST can make software development more efficient by standardizing design, producing
effective methodologies, determining user's needs and providing information®. ST can
produce and maittain design standards, naming conventions and coding conventions. The
teams can then ensure that everyone m the design process knows the standards. This

approach should make standards easier to follow.

Pitman, B., “Total Quality Management for Information Services®, Journal of Systems Management,
v43, 17, July 1992, p. 18, ;
3 Comaford, C., "Expediting development with Support Teams", PC Week, March 15 1993, v10, p. 68

-

Application Development Centers (ADC)

ADC consist in concentrate computer programming expertise and equipment at a smgle
location in order to provide an organization with evaluation, gudance and unplementation of
new development tools and methodology9. The key idea is to promote changes in the
organization with the guidance of a leader that must have a definte vision of how to
proceed. The leader has to work improving morale and motivating staff while méking sure

their teatns are recognized mterally and tramed m new technologies.

Reengineering

Reengineening is inci'easingly‘attracﬁng the attention of ISM Whﬁ are under pressure to
reduce dr cant;'ol operating cost. Part of the éttracﬁbri of Reengineering 1s that 1t can be
performed by large corporations and small companies alike. However, Reengiheering,
requires long-term implem;:ntation in order to yield savings. Some companies are using the
Software Processypmgram (SPP) at the Saoftware Engineening Institute :ét Carnegie Mellon
University? to help them bring their software Reengjne erng, préjects on time and under
budget. The program's review process helps evaluate and implement an oi'ganizaﬁon's

project planning, testing standards implementation an other process.

¢ Ray, G, "Development centers battle to get it done", Computerworid, August 24 1992, ¢. 77.
7 Wexler, I, "Re-engineering report card", Computerworid, July & 1992 w26, p. 51

ad

Software (Juality Assurance (5(J4)

One of the main aspects of TQM is ‘defect free products'. SQA is the function in software

organizations responsible for auditing the quality of the “line production® {programmers) and
they have to alert managers of any deviations. But, SQA is still an evolving disciphne.
Professionals are still defining what SQA 1s, how 1t 15 performed, when it 1s needed on &
project, and who performs it. Humpehreys® recommend to 1SM to keep SQA out of the
development process due to SQA “is concerned with auditing the process to ensure proper

implementation" rather than with the process its self. By the other hand, Listons?

recommend maintain the SQ4 people and the programmers together in one team.

By properly implementing an SQA. program, software can be a defect free product!0.

Benchmarking

Benchmarking can be focused on two areas, internal and external benchmarks. Depending
on the focus, different objectives are achieved. I'ntérnal benchmarks are used to dnve
continuous improvements for quality and productivity as well as predictions of outcomes.
Ezternal benchmarks identify competitive standing and improvement's opportunities. As
complementary activities, the external henchthark 13 used to identify new process

requirements and the internal benchmark 1s used to focus the improvement efforts. Using

8 Humphrey, W, Managing the Software Process, A ddison-Wesley 1959, p.-432.

Liston, B.,"TQM and Software Engineering: A personal Perspective”, The Fourth .Sj:mposzum on
Quality Function Deployment, 1992, p. 10.

11 owe, J. and Jensen, B, "Customer service approach to software guality”, Amual Cuality
Congress Transactions, vdt’- 1992, ASQC Wilvraukee, WI USA. pp. 1077-1083.

tenchrmarks in the proper context allows an enterprise to make effective decision on thew

software developraent and delivery processL,

Capability Maturity Model (CMDM)

In developmng applications, the CMM developed by the Software Engineering Institute,
attempts to define a software developer process maturity. Using the idea of TQM, CMM
helps developers in creating systems of control At key points i the process, characteristics
of quality are measured under a Statistic Process Control (SPC). CMM has a five-level
rating system that emphasizes continuous mprovement. The five levels of maturity that an
argani:;fatiun can achieve are initial, repeatable, defined, managed, and optimizingl2. In the
first level, developers work in their own fashion without following any of the corporate
lmdwle‘dge or guidance. The second level features stable planning and product baseline. By
level 3, defined, the team is using defined and mstituonalized process to provide quality
control. At level 4, the team 15 able to measure the software process through planting and
tracking. Inlevel 5, nptimifing, the mature team continues to work on its process
improvement. An interesting feature of the CMM is that can be used in a self-assessment,
that mean no auditors are requires to certify quality, for mature organizations. CIMM was

designed to help save money and time, and to do a better job the first time.

1 ¥rick, K, "Balancing the benchmark opportunities”, IREE Global Telecommunications
Conference and Exhibitions, 1991, vi, pp. 167-169. ' L.

12 polinsky, 5., "CMM can help you manage the process of application development”, byfoiWorid,
Nov. 21592, p. 47.

10

. ISO 9000-3

The ISO 9000-3 standard provides software developers with special mterpretation if the
International Organization for Standardization's IS 9000 standard for quality and consistency
in procedures. Unlike many manufacturing production procedures, software processes are
mexact and rarely fall mto predictable procedures. However today some software firms
have reached ISO 9001 certification under the ISO 9000-3 guidelines!3. 1SO 9000's
extensive document control requirements are especially challenging to software companies
because they often perform hundreds of revisions fo programs or individual modules.
Software test procedures cover a broad, undefined range, including test for functionality,
file-handling, platform portability, and other features. However, in ISO 9001, support for
continuous improvement is almost absent. 14, An ISO 9001 certification actually tells little
about ts software-development capability. Cerhification means only that some basic
practices are i place; in CMM terms, this translates to many repeatable levels, and some

at defined level Another wealmess of ISO 9001 is that require external auditors.

Computer Aided Software Engineering (CASE)

Some companies are using CASE tools to sumplify the process of software production and
increase programmers' productivity. CASE offers several advantages including
mprovements in software quality and design, and in development productivity. However, its
mmplementation is corplex due to the necessary involvement non technical players like

auditors that play a significant rcle in the rewiew of systems. Another wealmess if the lack

13 According to The Economist, Jan. 23 1993 p. 79, almost 200 sofiware firm have reached ISO 9001.
14 Coallier, F,, "How ISO 90001 fits into The Software World", [EEE Soffware, January 1994, p. 9%,

11

of capacity to identify and manage costs!5, and the lack of industry standards to provide
integration mechanisms and facilities to communicate and share data with the rest of the

quality environment16

15 DeBrandt, J, "Estimating maintensnce costs®, Computerworld, March 75 1991 vZ3; ﬁ.ﬁ?;- .
¥ Boudjlide, N. and Bassons, H., "Integration mechanisms in ALF", Proceedings of the Second
Infernational Conference on Systems nfegrafion - ICST 92, pp. 315-324.

12

The Voice of the Customer
Customer satisfaction

Traditional software development methodologies are focus on detecting errors by appraisal
(reviews, mspections and testing). With these methodologies, the best that we can get s
zero defects. Modern methodologies, like quality function deployment! 718,19 (QFD), have

been developed to add value to the design process.

With QFD we can concentrate on maximizing customer satisfaction from the software
engineening process. In addition to SPC, which helps to avoid customer dissatisfaction, we
can use QFD ﬁrst to desigr; then to develop or code and finally, marketk software that
customers want to buy. In this process we have to understahd what 1s valuable to the

customer, and deploy that understanding of value through the software kfe cycle.

Customers accept or buy software for the following reasons. It helps them to: 1) solve
problems, 2} evaluate oppormmues 3) look good, or 4) image2l. Any software that does not

satisfied a customer in at least one of these four ways is valueless.

To satisfy customers, teams must focus on the software elements from the customer's pomt
of wiew. This requires, first, understanding the customer's problems and opportunities

developing technical requirements. There are three types of requirements: normal

7Hauser, John R. and Clausing, Don, “The House of Quality”, Harvard Business Review, May-June
1988, 1. 63.

18 Evans, James R. and Lindsay, Williams M., The Management and Confrol of Quality (West
Fublishung Compartry, 1997) pp. 150-163.

19 Hutchinson, C. and Kihara T, "QFD as a Software Design Tool for Software Development®, :rm
Fourth Symposium On Quality Fumction Deplopment, 1992, pp. 113, -

20 Zulter, Richard E,, "TQM for Technical Teams”, Communications of ACM, October 1993, v36,
nll, pp. 79-91.

requirernents (or needs), expected requirerments, and exciting reqmrementsél. Mormal
requitements are th&ée typically collected by surveying or interviewing custorners and
expressed as "wants", The customer satisfaction is directly proportional to their presence.
Expected requirements are these so obvious that nobody made mention. They do not satisfy
but, meets expectations. Fmally, exciting requirernents are these unexpected. If there are
not present, they do not dissatisfy, but if they are, they lughly satisfy because they are

beyond customer's expectation.

As customers generally do not provide expected and exciting requirements, the team have
the responsibility of understand what are the problem and opportunities of the customers.
Getting close to customers, using brainstorming and successively asking Why?22, a
complete set of requirements can be prepared including qualify requirements, functional -
requirement, data requirement, and performance requirtament For exarﬁple, "] want to have
automatic files' héck-up” 1s a quality requirement that includes data requirement, "files”.
“Short cuts must be provided to options in the first level® 1s a functional requirement and

"“The update must be on-line" is a performance requirement. -

Then the software can be specified in term these requirements, developing successively
hierarchical decomposition and deploying the requiremnents through the rest of the process.
Once this task 15 done, the design stage must be achieve. Then, the software must be coded

and implemented.

21 Evans, James R. and Lindsay, Williams M., The Management and Confrol of Qualiy (West-
Publishing Company, 1993) pp. 147-149,
22 Tbid, p. 242,

14

Ta pursuing ezcellence in software development, the final product of this process --an
executable program and its documentation-- raust meet the normal, expected and exciting

customers' requirements.

Customer Invelvement and Communication

How can we get detailed information about how people work when they cannot articulate it
on thetr own? What 15 the best way to involve the customer in the design process? Many
software designers have been in front of these questions sometime trying to design a first-

class product.

Holizblatt and Beyer23 addressed these questions thruugh a technique named Contextual
Inquiry (CI): "CI allow to get data from customérs in cosé:exz: while they work at real task
in their workplace". With this technique we can obserire; interrupt, ask questions and
dialogue with the user at work. Both, the interviewer and the user, can discover beyond the
user work and what it is implicit in the user mind. When the user worlang on or describing
its real problems, it is much more expressive than when talking in generaliies. According
the authors' experience, customers become just another designer afncmg designers, losing its
capabilities to represent the user community, when they brought into design meeting,

Entity relationship models (ERIM), data flow diagrams (DFD) or other software design tools
are unfamiliar to customers, instead, contextual design builds on customers' strengths by
doing all work with them in therr own context and on their own problem.

The final purpose is to gather déta in the user workplace and put the people taking design

decistons in front the user.

3 Holtzblatt, K. and Beyer, H., "Making Customer-Centered Design Work for Teams”,
Commumications of ACM, October 1993, v36, nl0, pp. 93-103.

15

Name Index

Boudjlida, M. and Bassons, H., “Integration mechanisms i ALF", Proceedings of the
Second ternational Conference on Systems Integration - ICSI 92, pp. 315-324.
Coallier, F., "How 150 90001 fits into The Sofcware World", JEEE Software, January 1994,
p. 98.

Comaford, C., "Expediting development with Support Tearns", PC Week, March 15 1993,
v10, p. 68 .

Constantine, L., “Building structured open teams to work”, Software Development 1991
Proceedings. Miller Freeman, San Francisco, California, 1991,

DeBrandt, J., "Estimating mamntenance costs", Computerworid, March 25 1991 v25, p. 69.
Evans, James R. and Lindsay, Wilhams M., The Management and Contrel of Quality
(West Publishing Company, 1993) pp. 150-163.

Evans, James R. and Lindsay, Wiliams M., The Management and Control of Quadlity
(West Pubﬁshing Company, 1993) pp. 147-149. ;

Hauser, John R. and Clausing, Don, "The House of Quality", Harvard Business ReWew,
May-June 1988, p. 63.

Holtzblatt, K. and Beyer, H., *Malang Customer-Centered Design Work for Teams",
Commurications of ACM, October 1993, v.36, nl0, pp. $3-103.

Humphrey, W., Managing the Software Process, Addison-Wesley 1989,

Hutchinson, C. and Kihara, T., “QFD as a Software Design Tool for Software
Development”, The Fourth Symposium On Quality Function Deployment, 1992, pp. 1-13.
Knick, K., "Balancing the benchmark opportunities”, JEEE Global Telecommunications
Conference and Exhibitions, 1991, v1, pp. 167-169.

Liston, B. ,"TQM and Software Engineering: A personal Ferspective”, The Fourth- -

Symposium on Quality Function Deployment, 1992, p. 10

16

