

 ETM OFFICE USE ONLY
Report No.: See Above
Type: Student Project
Note: This project is in the filing cabinet in the ETM department office.

Title: Development of a Knowledge-Based Scheduling and Quality
Monitoring Software

Course:
Year: 1993
Author(s): P. Byrne

Report No: P93041

Abstract: Here we detail the development of an intelligent scheduling and
quality monitoring software package for a law firm. The scheduling aspect
of the software forecasts preparation time of a batch of legal documents. The
quality monitoring aspect determines the probability that documents within
batches will be returned for corrections. The software has been termed
intelligent because the system updates its rules to reflect changes in the
values of particular variables.

Development of a Knowledge-Based
Scheduling and Quality Monitoring

Software

P. Byrne

EMP-P9341

DEVELOPMENT OF A KNOWLEDGE-BASED

SCHEDULING AND QUALITY MONITORING SOFTWARE

P. Byrne

EMGT 506- Spring 1993

ABSTRACT

This project involves the development of an intelligent scheduling and quality monitoring

software for a law firm. The scheduling aspect of the software forecasts the time to prepare a

batch oflegal documents. The quality monitoring aspect determines the probability that some

documents within a particular batch will be returned for corrections. The software has been

termed intelligent because it is possible for the system to update its rules to reflect changes in the

values of particular variables.

Preliminary results are encouraging. The software predicts a slightly longer time to

completion, but is sensitive to the batch size and the document complexity. Additional testing

must be carried out to determine how accurate the software is in predicting the possibility of

errors.

TABLE OF CONTENTS

INTRODUCTION 1

Identification of the Problem 1

Background Information 2

Information Gathering 4

SYSTEM DEVELOPMENT 8

Expert System Development 8

Rules and the Learning Process 10

SAMPLE RUN 13

VALIDATION 19

Testing and Refinement 19

Verification 20

CONCLUSION 22

REFERENCES 23

APPENDIX 24

INTRODUCTION

Identification of the Problem

A small, local law firm is involved in the preparation of legal documents for an estate

planning agency. The firm expressed interest in determining (to a more exact degree) the time

needed to process a batch of documents, and in improving the quality of the documents. A large

amount of information was readily available in the form of old client files, but the firm lacked the

staff needed to continually monitor and update the information that could be obtained from these

files. A computer program was proposed as a possible solution. The ideal program would be

highly graphical in nature and user friendly, as the primary user is somewhat uneasy with

computers. The program would need to be able to update itself, preferably in a manner

transparent to the user.

Scheduling problems lend themselves very well to computerization [I]. There are a vast

array of popular software packages devoted to project management, and scheduling in particular,

and many offices take advantage of these tools. Quality control has also been implemented with

the assistance of computers [2, 3, 4]. Due to the amounts of data generated by the information

gathering for quality control and statistical process control, computers are almost indispensable

for the analysis of the data generated.

1

Law firms traditionally make use of software of a different nature (specialized word

processors, etc.) and popular opinion tends toward the feeling that lawyers are reluctant to

implement total quality. The computer program developed for this project presents a combination

of scheduling and quality monitoring.

Background Information

The firm receives the applications for the documents, processes them, prints them, makes

final preparations, and ships them. All of the documents are similar, but the preferences of some

clients make it necessary to spend additional time with document preparation. In summary, the

steps of the process are as follows:

1. Applications for the documents are received.

2. Once client names are known, personalized binders are ordered.

3. Secondary merge files for each client are prepared.

4. The documents are merged, edited, and printed.

5. The documents are shipped.

2

Delays have been known to occur during any of these steps. There have been occasions when the

firm has failed to receive applications that are shown on the packing list. There have been printing

errors with the binders. A client may have special needs and the file preparation could become a

lengthy process. The printing process may be delayed due to a lack of paper or toner cartridges.

There have been misdirected and lost shipments. Some of these delays, such as the problems with

shipping, are infrequent. Others, such as printing problems, are easily prevented through

planning. The most frustrating delay is caused by complex documents, which are not avoidable,

but are where a major amount of time is consumed.

The agents involved in the initial sale of the documents are eager to receive and deliver

them to the clients. At present, they are instructed to inform the clients that delivery can be

expected from four to six weeks after the firm receives the applications. As previously

mentioned, the firm would like to be able to give the agents a more accurate (and shorter) time

estimate for delivery.

3

Unfortunately, there are times when a document contains errors. The majority of these

errors are in the spellings of names and addresses. Other errors have occurred where the wrong

individual has been named to a position of authority by the document. When the firm is informed

of an error, a correction is printed and delivered. In such situations, it is important to track down

the source of the error. There are three possible sources:

1. The Client - Sometimes the clients decide that they want to designate different people

to positions of authority in their document. This is not considered to be an error, but

rather a change. At the present time the firm does not charge the clients for these

changes.

2. The Agent - Some agents are notorious for careless spelling errors and poor

penmanship. On occasion they omit vital information which must be known prior to

the document preparation.

3. The Firm - Although it is rare, the firm has been known to make errors in the

preparation of the secondary merge files.

The firm determines whether the correction is due to a client change or an error by

examining the secondary merge file and the original application.

4

An intelligent software would be able to forecast the time needed to complete a batch of

documents and to forecast the possibility of receiving corrections. The factors that affect the

amount of time to complete a batch of documents include the number of documents in the batch,

and the complexity of those documents. The chance that corrections will be needed in a particular

batch depends on which agents are represented. The past record of the agents must be examined.

After an actual batch has been completed, additional data (the actual time needed) will serve to

modify the knowledge base, making it "intelligent". This modification reflects the learning

process.

Information Gathering

The information that is needed for the scheduling aspect of this project includes the size of

the batch (the total number of documents per batch), the number of complex documents per

batch, and the time to complete the various tasks (this may vary depending on the batch size and

the complexity of the documents). For the quality monitoring aspect of the project, the necessary

information pertains to the individual agents' propensity for errors. A major portion of this

information was available from a data base that was being constructed for record keeping

purposes. Not all of the information in the data base was fit for use because it included some very

old, incomplete records. The data base that was used to obtain initial time estimates and agent

information contained 730 records. This is believed to be an adequate sample, as our typical

volume at the time the data was being gathered was from 15 to 30 documents per week. Volume

has increased to an average of 40 documents per week. Some agents were not well represented

by the sample because of their own low volume, and were excluded from this study. Additional

time estimates were obtained by asking the individual responsible for document preparation.

Those estimates were remarkably close to the value for the total expected time obtained by

manipulating the data base, but the variance obtained using the information in the data base was

much larger. Information from that individual was indispensable, as no obvious relation could be

deduced between the document complexity and the task completion time.

5

To begin the scheduling aspect of the software, a simple network diagram of the tasks was

constructed (Figure 1.). The optimistic, mean, and pessimistic times for the tasks that were

obtained from the human expert are shown in Table 1. The table also lists the expected times and

the variances for the tasks. The total expected project time and the total variance are also shown

compared to the values obtained using only data base information.

The time estimates shown in the table reflect the times required for an average batch of 40

documents, with no complex documents. Complex documents do not affect the time estimates

for the ordering of binders, the merging, editing, and printing, the packaging, or the shipping. In

the expert's opinion, the total time for secondary merge file (SMF) preparation is increased by one

day for each complex document.

The numbered tasks shown in the figure and table are as follows:

I. Applications received - this was not really a task, and shouldn't take up any

time, but it may be considered to if there is some delay in sending out the

binder imprinting list or starting the secondary merge file preparation, so it was

included for clarity.

6

2. Ordering of binders.

3. Preparation of secondary merge files (SMF).

4. Merging, editing, and printing of files.

5. Packaging of documents.

6. Shipping of documents.

Figure 1. Network diagram of tasks.

Task a m b tc v

I
2 2 3 5 3.167 0.25
3 I 3 10 3.833 2.25
4 14 25 30 24 7.111
5 I I 2 1.167 0.278
6 2 5 7 4.833 0.694

Total values: 33.833 10.333

Data base values: 31.139 117.4

Table 1. Time estimates (values are in days).

7

The quality monitoring aspect of the project involved analyzing the existing data base to

obtain a "probability for making errors" level for each agent. This level was simply the ratio of

the number of corrected documents to the total number of documents for each agent. As can be

expected, only a few of the agents were shown to be habitual offenders, and most of them had

very low probabilities for errors. However, it is important to note that the data base used for this

analysis was the same one used to obtain the time estimates. Figuratively, it was a very clean data

base. The true error probability levels are suspected to be somewhat higher for all of the agents,

which means that the bad ones are much worse than they appear. The main reason for this is that

many corrections are not properly filed or recorded.

SYSTEM DEVELOPMENT

Expert System Development

Since this project involved collecting and manipulating expert knowledge, it seemed

appropriate to follow some sort of expert system design. The software was developed through

the use of an expert system development shell. The particular shell selected was LEVELS

OBJECT. This software operates under the MS Windows operating environment. A shell was

selected for several reasons. First, it speeds up the development process because the inference

engine (the manner in which the rules are processed) is built-in. Second, many shells are object

oriented softwares, and the development of knowledge bases proceeds smoothly due to the

organization that is forced upon the developer (classes, attributes, instances, and so forth). The

third reason - relating to the brand of the shell - was that a swift development process was

expected due to the developer's previous experience with the shell.

8

Several types ofinference engines are used in expert systems. The most popular are

forward chaining, backward chaining, point-to-point hypertext, procedural, and hybrid [5]. In

forward chaining, or data-driven inference engines, the data is known beforehand and the goal or

answer is found by obtaining answers to questions presented to the user at execution time. This is

an appropriate method to use when there are many possibilities or outcomes depending on the

data. Backward chaining or goal-driven inferencing begins with an assumed goal and works

backwards in an effort to determine if the proper goal was assumed. This is appropriate when

there are few goals or answers to investigate. Point-to-point hypertext is a user-driven type of

inferencing which is often employed in the construction ofinteractive point-and-click graphical

9

(user-friendly) interfaces. Procedural engines are very similar to computer code, and are good for

numerical applications. A hybrid engine would be a combination of these [5].

For this project, point-to-point hypertext was used for the user interface, and a

combination of forward chaining and procedural inference engines was used to construct the

knowledge base. The point-to-point hypertext was selected because it is unintimidating - the user

simply selects choices that are offered and rarely needs to use the keyboard to enter special

commands. The procedural type of engine was used for processing the mathematical aspects of

the program, and forward chaining was used for directing the user interface based on user

response.

The objects of the knowledge base represent packages of information. Objects are

grouped into classes, attributes, and instances. An instance is the lowest or most specific level,

and is used to represent a current value for an attribute [5]. An instance can hold one value at any

time. An attribute may be better described as a variable. If it is assigned a value, that value is an

instance of the attribute, but the attribute may possess more than one instance at one time. A

class collects attributes beneath it. It is really more of a structure, and does not hold any values

by itself

One advantage of programming in this manner is the ability to use class inheritance. It is

best used when a large number of objects have a similar structure. For example, in the initial rule

base of this software, 39 agent classes are represented. Each one of these classes needed

attributes to represent the agent data. Instead of creating identical attributes beneath each agent

class, a separate, generic class was created to hold these attributes. Each of the 39 classes then

inherited the one generic class. One point of interest - if separate attributes were created under

each of the 39 classes, they would need different names.

Rules and the Leaming Process

10

After the information gathering and the initial data analysis was completed, a major task

was the incorporation of a learning capability. It was desired that the learning process would not

have to be initiated by the user, but would be an automatic function of the system. This was

because the intended user does not have the necessary knowledge to update the system. The first

approach to developing a learning process was to manipulate the rules after detecting whether or

not modifications were necessary. This method of rule manipulation can be illustrated by starting

with a simple IF ... THEN ... rule:

IF modifications to rules are needed = TRUE

THEN begin modifications := TRUE

The rule illustrates a check(=) of the value for modification to rules are needed. The antecedent

"asks" if the object is equal to TRUE. If the value for this variable is TRUE, the conclusion of the

rule is fired, and in this case, another variable, begin modifications, is assigned(:=) the value of

TRUE. Another sort of rule commonly used, a WHEN CHANGED rule, is more procedural in

nature. This type of rule fires whenever its reference attribute has been given any assignment [5].

The firing occurs even if the attribute has been assigned with an identical value, so the name

WHEN CHANGED is somewhat misleading. It is preferable to use a separate rule to modify

another rule because some instability can occur if the value of an attribute changes during the

11

execution of a rule in which it is referenced. In the example that follows, a WHEN CHANGED

for begin modifications is shown. In this rule, there are checks for the type of modification that is

needed. This rule will branch to other rules (to carry out time modification or confidence

modification) when it needs to, then it will return and conclude itself.

WHEN CHANGED begin modifications

BEGIN

END

IF time span modification is needed = TRUE

THEN modify time := TRUE

IF confidence level modification is needed = TRUE

THEN modify confidence := TRUE

The preceding examples of rules illustrated one way of modifying the knowledge base.

The method that was actually used in the project was not as elegant but was more reliable. The

method involved converting all relevant instance values into strings and writing them to a text file

at the end of a session. At the start of a subsequent session all of the data was converted back to

its original value type; intervals (time), numbers, simple (T/F). This data was written back to the

knowledge base after the program had gone through its own initialization process.

The initialization unfortunately would set all instances to the last value provided during

development. That is acceptable if the rule base is not expected to change, but a primary

objective of this project was to make the rule base modifiable. Since the rules are referenced to

specific instances, the outcome of the rules depends on the values of those instances. By writing

back the last value of an instance obtained during execution, the rule base has been effectively

modified.

12

There are several reasons that this method is perceived to be more dependable than

writing rules to modify other rules. The first is that there are fewer rules overall and less can go

wrong during execution. Secondly, the debugging process is simplified because the developer

does not have to determine if problems exist due to the modification process or due to the rules

that were modified. Finally, and probably the most binding reason, was that the developer

determined that the software development shell constrained the ability to modify rules once they

were written. This was no doubt considered to be a benefit to developers, to prevent corruption

of their knowledge bases.

13

SAMPLE RUN

To demonstrate the program, a sample run is included here in the form of screen shots.

The first screen to appear is a standard title screen and is shown in Figure 2. The software

name, company name and restrictions on the use of the software are shown. The button located

in the lower right hand comer of the screen has two purposes. First, it activates a command for

the system to read the data file containing the 110Id11 knowledge. After all of the instances have

been reinitialized with their previous values, the user is routed to a subsequent screen. Presently,

if the system is unable to locate the data file, the user is routed to a null screen. It is possible to

incorporate a foolproof file searching method, but the programming overhead is substantial.

= AIU -;d1~duler

The American Trust Design Group
10075 SW 8::.rour 5ivd/5 • Su:le 408 • Port'and, OR 97219

Tn15 s~rtVJare has been prepared exctusrvely for David B. Thompson

ATD Scheduler
V..rslo 1.B· 5113

Figure 2.

The second screen of the system is shown in Figure 3. There are two options as to how

the information will be entered into the system. The graphical tool used is called a radiobutton,

14

and only one of its items can be selected at a time. When a second item is selected, the first is

deselected. The selection made at this point determines which screen appears later.

It is preferable to have the data loaded into the system through a file instead of manually

entering it. The reason for this is that the manual information entry screen shown on the next

page is rather busy - it contains a great deal of detail. The alternative was to split the screen into

three or four separate screens. This alternative was not selected because a cumbersome data

entry process defeats the benefit of a swift point-to-point hypertext user interface. Another

reason that manual entry is not preferred is the possibility of error. If a number is accidentally

entered for the wrong agent, the value calculated for the error probability will be affected as

different probabilities are determined for each agent. In addition, the data file written at the end

of the session will be corrupted with this information and the error will propagate each time the

program is executed. By using a checked and edited file, these errors can be avoided.

= AIU sd1t!dt1lef
file i}l(I

You may enter the information for this batch manuaUy or you can
access the information if it has been entered into a data base.

Please select one:

0 access det. base lnturrnatioa

Figure 3.

15

The manual information entry screen is shown in Figure 4. As was previously mentioned,

it is crowded. This screen prompts the user for the total number of documents in the batch, the

number of documents that are considered complex, and the number of documents that each agent

has in the current batch. Not all agents will submit documents for each batch. Once all of the

information in entered, the OK! in the upper left hand comer is selected to begin processing. If

additional agents are hired, an additional screen would be necessary.

1:1 ATD scheduler
file 21<1

How many documents are included In this batch? D
How many of these are complex ABC trusts? D
Indicate the number of documents for eacll agent

D Becker D Aood D Kestner D Reaves

D Bloom Gonser D Legare D Simmons

Cadle Goodman Letarte D Stone

D Clark Greenwood Mahler D Todd

D Dougherty D Greig Malloy Turner

D Dreiling D Gunderson D McCarter D Wheeler

Duhon Hammer D McKenzie D Wilson

Dumont Heath Moore D Wolfe

D Edgmon Holman Pool Wyckoff

D Ferris D Karels D Rasmussen

Figure 4.

If a data base contains the information that the system needs, input is less tedious for the

user. The screen on the next page shown in Figure 5 shows the screen that appears if the user

selected the option to access the data base information. The name of the file is typed into the

16

space provided. It is important to include the path of the file, or the software will only look in the

directory in which it resides. The system will search for the file after the OK button in the center

of the screen has been selected. If the file cannot be found, the user is again sent to a null screen.

Once the file is located, the system proceeds to open and read the file. The information is

assigned as instance values, but this new information occupies a different instance than the old

data that was loaded at the start of the session. The file that was loaded was for an imaginary

batch dated June 1, 1993. There were 30 documents and 12 of them were considered complex.

Three agents were represented, each with 10 documents. One had a high error rate (about 25%),

but the other two had reasonable rates (one was around 10%, and one was zero).

= ATU scheduler 0

If the information about this batch of documents has been entered into a
data base, we can access this information to estimate the schedule and
forecast the quality.

Type the name of Ille data bH• file: lc:\pdoxwln\worlclng~.~

Figure 5.

The screen shown in Figure 6 is the final screen of the program. If shows the estimated

times for the tasks. The lengths of the bars are specified by defining pixel locations for the four

17

comers of a box. These pixel locations have been detennined by the intervals needed to complete

the tasks. The top and bottom borders of the boxes do not change; only the left and right borders.

The dates written along the top of the screen are detennined by the date given for applications

received. The actual dates that were produced are as follows:

Applications received on June 1, 1993

Binders ordered and SMF preparation begin on June 1, 1993

Binders received June 4, 1993

SMF preparation completed June 15, 1993 (takes 15 days)

Document preparation begins June 16, 1993

Document preparation concludes July 14, 1993 (takes 29 days)

Packaging takes place on July 15, 1993

Shipping begins July 16, 1993

= ATO scheduler El
file 2KJ

1116-111-93 I 1116-11&-93 I IOG-15-93 I jDG-22-93 I 106-2!1-93 l ro7-06-93 l ro7-13-931

.Applicatlona I
rec'd

Binders
ordered

Secondary
mergeflle •••••••••
preparation

Documenl
preparation

Packaging

Shipping

The probability for receMng corredlons for documenla In this balch is: 12.355%

Figure 6.

•

18

The developer discovered that the software needs to be adjusted to account for tasks that

extend beyond the right hand side of the screen. The user can always scroll to see the remainder

of the screen, but it was decided that this is not appropriate.

The relevant task times were calculated as follows:

Task3 = [;0 J+y Task4 =7 +[2~]+y

The variable x represents the total number of documents in the shipment, and the variable y

represents the number of complex documents. The result of this equation is the number of days

to complete the task and is rounded to the nearest integer. Other tasks are not considered

dependent upon the number of documents, and are not caJculated separately for each batch.

At the present time, the software does not account for holidays. In developing the system,

the effects of overlapping batches was not considered. However, the time estimates from the

human expert and the data base must have accounted for this, since our batches always overlap.

19

VALIDATION

Testing and Refinement

Testing and refinement is an essential part of any software development [6, 7, 8]. It is

appropriate to begin testing as early as possible, since a large untested program may slow down

system development. Testing for this program involved both the user interface and the rule base.

The user interface was tested to determine if it behaved correctly given the system input. This

process was carried out simply by viewing the sequence of the screens. The testing of the rule

base involved running a history file. The history file shows every step that the knowledge base

takes, and tracks every single line of the rules that are fired. It can also be used to track the user

interface. Conducting a session with a history file running simultaneously dramatically stretches

the execution time, but it is invaluable when it comes to debugging.

Refinement is appropriate at a later point in the development process, but it should not

occur so late that it generates severe changes in development. Refinement is a type of clean up

work that is mostly cosmetic. Refinement on this project involved revising the layout of the

screens. An appropriate color scheme was also selected. On screens that prompted the user for

information, the prompts needed to be clear and not too crowded. For this project, one of the

screens was unavoidably crowded. On screens that provided information, the font had to be large

enough to read.

20

Verification

Closely related to testing is verification. While testing can be considered successful if a

program is free of bugs and relatively foolproof, verification answers the more important

question, "Does it work?" To verify this program, several batches of documents that were not

included in the data base that was used for initial analysis were used as "guinea pigs". The

relevant information was presented to the knowledge base via a separate data base file. The

results shown in the final screen were compared to the known time for batch completion. The

probability for receiving corrections was to be compared to the latest information available on

corrections received, but at this point nothing has been received. The results are shown in Table

2. Run # 1 was for a batch of 40 documents with 3 complex documents. Run #2 was for 20

documents (no complex), and Run #3 was for 35 documents (no complex).

Task Run#l Run#2 Run#3

I
2 3.167 3.167 3.167
3 7 2 3
4 24 13 19
5 1.167 1.167 1.167
6 4.833 4.833 4.833

Total time: 37 21 28
Errors: 9% 16% 4%

Real time: 28 17 26
Real errors: Unknown Unknown Unknown

Table 2. Time comparisons (values are in days).

21

The total time values reflect the fact that task 2 is carried out simultaneously with tasks 3 and 4,

and the time for 3 and 4 is always longer than that for 2. The results seem to show that the

software provides a slight overestimate of the time required for completion. This information can

be used to modify the "old knowledge11 data file. After comparing to the actual records, task 2

was found to have been both underestimated and overestimated, but that would not affect the

total task time because it happens simultaneously with tasks that take a longer time to complete.

Tasks 4 appears to be the culprit.

22

CONCLUSION

The results from the preliminary verification are encouraging. Previously, agents were

informed that documents could be expected in 4 to 6 weeks. Although the software is predicting

a similar time, it is sensitive to the batch size and the complexity. Further investigation must be

carried out to determine how accurate the software is in predicting the possibility of errors. The

fil!e writing capability can be exploited to monitor progress in this area.

The software currently represents 39 agents. That is how many agents were represented

in the data base used to assist in system development. That data base only represented about 65%

of the total agents. At this time further development would be needed to represent all of the

agents, but this would not severely affect the structure of the knowledge base.

Recently the firm implemented a policy concerning the document corrections that can be

traced to agent error. Those corrections will now cost the agents $5.00 per page. We hope to

make the agents more careful about information validation. The software will be used to monitor

the overall probability of errors by tracking the progress of the individual agents.

23

REFERENCES

1. Wiest, Jerome D., and Levy, Ferdinand K. A Management Guide to PERT/CPM, Second

Edition, Prentice-Hall, Inc., 1977.

2. Miller, L. "Computerized Quality Control System," Food Technology, July 1991, Vol.

45, No. 7, p 102.

3. Duncan, Robert M. "Quality Forecasting Drives Quality Inventory at GE Silicones,"

Industrial Engineering, January 1992, Vol. 24, No. 1, pp 18-22.

4. Anonymous. "Software Facilitates TQM Program at Union Pacific Railroad," Industrial

Engineering, April 1992, Vol. 24, No. 4, pp 25-26.

5. LEVELS OBJECT Reference Guide. 1990, Information Builders, Inc.

6. Gallagher, John P. Knowledge Systems for Business, Prentice-Hall, Inc., 1988.

7. Delgado, Rafael F. "Planning For Quality Software," SAM Advanced Management

Journal, Spring 1992, Vol. 57, No. 2, pp 24-28.

8. Pitman, B. "Total Quality Management for Information Services," Journal of Systems

Management, July 1992, Vol. 43, No. 7, p 18.

