ETM

ENGINEERING & TECHNOLOGY MANAGEMEN

Title: Evaluation of Software Development Projects
Course:
Year: 1991

Author(s): M. G. lyigun

Report No: P91015

ETM OFFICE USE ONLY
Report No.: See Above
Type: Student Project
Note: This project isin the filing cabinet in the ETM department office.

Abstract: The growth of software use in recent years has focused
attention on the problems long associated with its devel opment.
Uncontrollable costs, missed schedules and unpredictable quality have all
been regrettable trademarks of the software industry. The focus of this paper
was obtaining data through a survey to be used to investigate sources of
design modifications, reasons for changes and user-devel oper interface
problems. Due to low response rate, the focus of the study was changed to
the interpretation of gathered datain the field of knowledge rather than using
survey

Evaluation of Software Development
Projects

M. Guveﬁ Iyigun

PI115

e

EVALUATION OF SOFTWARE
DEVELOPMENT PROJECTS

EMGT.510P

ADVANCED PROJECT MANAGEMENT
IN ENGINEERING AND TECHNOLOGY

Submitted to Professor Dundar F. Kocaoglu

M. Guven IYIGUN

Engineering Management Program
Portland State University
Spring-1991

INTRODUCTION

The growth of software use in recent years has focused attention on the problems
long associated with its development. Uncontrollable costs, missed schedules and
unpredictable quality have all been regrettable trademarks of software industry. Moreover,
these problems appear to vary in some proportion to the size andr’ﬁtvhﬂc—: complexity of
development project [12]. To mention some of the well known [16]: |

- Lotus 1-2-3, version 3 contains 400.000 lines of code. Labor required for

development is 263 man-years with a cost of $7 million. For this version, Lotus
$pent approximately $15 million in quality control testing.

- Space shuttle contains one of the longest, most sophisticated, and most

expensive software programs yet developed, with 25.600.000 lines of code,
22.096 man-years of development effort and cost of $1.2 billion.
- Cars can’t run without ’softw’are these day.s_.j :On 1989 Lincoln Continental, a
~ $29.000 luxury sedan, programs control th‘erdigital dashboard, brakes, kair bag,
door locks, steering, suspension, engine and air conditioner. These software
contain 83.000 lines of code with 35 man-yearS development effort and a cost
of $1.8 million.

Mor¢ important, all of these software programskare completed much later then they
are expected and planned. What appears to be a straightforward technical task in the
beginning turns into a management crisis in later stages. It takes many hours of debate,
sortiné through a ton of procedural issues, and requires policy decisions completely unrelated
to the actual coding. As the computers grow more powerful and user demands grow more

sophisticated, the process of developing new software and maintaining and modifying old

systems has turned into an exercise in frustration at the cost of millions of dollars [16].
Error detection and error correction are now considered to be the major cost factors
in software development [3], [20]. Much of the recent research is devoted to finding ways
of preventing software errors. This research includes the areas of requi_re_r;lfnts definition [1],
automatic and semiautomatic program generation, functional speciﬁcat;on [11], verification

[8], coding techniques [9], error detection and testing.

AIM OF THE STUDY

The purpose of this paper was to obtain data through a survey that may be used to
investigate sources of design modifications, “reasons of changes and user developer interface
problems. Ninety-seven survey instruments are sent to Software Development Companies
located all in Oregon. Addresses of the companies are found from Oregon and Southwest
Washington Manufacturers Directory [21]. A copy of the mailed survey instrument can be
found in Appendix. Fourteen responses are obtained, corresponding to 14.4% response rate.
However low response rate unabled the pfocessing of gathered data statistically. Therefore,
focus of the study ha§ been changed to the interpretation of gathered data within best of
knowledge.

Overview of the Data

A summary of response data can be found in Appendix. Following statistics are given
as indicators of average project characteristics of response data.

Effort Required (work-days) . 235

Effort Required (man-month) : 18.76

Number of Developers : 2.39

New Lines of Code Developed : 12850 -

Lines of Code Used, Developed Earlier : 20800
Number of Modifications : 12.86
Number of Errors : 10.36
Changes per 1000 Lines of Developed Code 1.00 B
Errofs per 1000 Lines of Developed Code : 0.81
Errors per Developer : 4.33
Errors per Developer per Month : 0.55
Modifications per Developer R 5.38
Madifications per Developer per Month : 0.69
-Errors per Work Month 132
Modifications per Work Month : 1.64

Changes are divided into two categories; error corrections and modifications. Errors
are defined to be the discrepancies between specifications and their implementations.

Modifications are changes made for purposes other than error correction.

Questions of Interest

Main questions of interest prior to conducting the survey can be stated as follows:

1. What is the distribution of changes according to reasons for changes?

2. What is the distribution of effort required to design changes?

3. What is the distribution of error correction changes according to reasons for
error correction?

4. What is the distribution of effort required to change errors?

5. When are the errors detected?

6. When do the errors enter the system?

As can be seen the survey instrument has been désigncd to look for these spccifié
answers. Although’, we have plotted the raw distribution of response data in an attempt to
answer the questions of interest, inability to test the significance of distﬁi;ions. In the next
section, questions of interest, as stated above, will be answered without resorting to any

statistical analysis.

Answering Questions of Interest

Following are the relations between the questions of interest and distributions.

Fig.1: | What is the distribution of changes according to reasons for chapges?
FIGURE. 4
8.3
8,51 7
8.21
B 849 7
% N N,
8,854/
A B C D E F G H
where A: Error correétion
B: Planned Improvement

C: Implementation of Requirements Change

D : Improvement of Clarity, Maintainability or Documentation

E:. Insertion-Deletion of Debug Code

F: Optimization of Time-Space-Accuracy

G : Adaptation for Hardware Environment Change
H: Other

3

As can be seen from the distribution approximately 75% to 80% of c-hangcs made to
a software during its development cycle are due to user needs. Although a statistic giving the
required time per change order is missing in the survey data, responding very late to 75%
customer originating development change orders can be very costly in terms of time and

customer satisfaction.

Fig.2 : What is the distribution of effort required to design changes?
- FIGIRE.2
8.3
8.51
8.2 %
poo B3

w7

NS E

A B ¢ D E F G H

where A : Error Correction
B: Planned Improvement
C: Implementation of Requirements Change

D : Improvement of Clarity, Maintainability or Documentation

E: Insertion-Deletion of Debug Code

F: Optimization of Time-Space-Accuracy

G: Adaptation for Hardware Environment Change
H: Other

When inspected, we can see that approximately 65% of designirfg for change effort
is related to customer needs. In other words, if .a programmer is spending 100 hours of work
on designing and performing changes associated with the software, he should spend 65 hours
of his time for the design change order associated with the customer’s needs. This figure
gives the importance of how time and money saving it can be, understanding the
requirements of customer as early as possjble in the development phase. Probably some
portion of time spend on customer design change orders can never be reduced due to
customer’s ever changing needs associated with today’s woﬂd’s requirements. But consider
decreasing »the' time spend on requirements change by 50%. This will on the average
decrease average project duration by 80 work-days, decreasing the software development
time from 235 work-days to 160 work-days, or decreasing number of developers from 2.39
to 1.62 per project. This is a significant decrease. It means on the averagé approximately
50% more projects can be undertaken with the available development crew and available
resources. It is worthwhile to note that these calculations and estimates are based on a
realistic assumption of 50% decrease on the time spend for requirements changes. But on

the other hand, of course all of these figures are reliable within a sample size of 14.

Fig3: What is the distribution of error correction changes according to

reasons for error correction?

RS
81

7 N F

~>

l\' 8,15+

/ VA

U i

—

A B C D E F
where A: Requirements Incori'ect or Misunderstood
B: Design Error |
Misunderstanding ﬁérdwarc Environment
Error in Use of Programming Language

Clerical Errors

T om U0

Others

In the above graph, category-A and category-C are of major importance to us. These
are the time delaying activities which can be prevented if are attacked more systematically.
Categories B, D and E are more related to the skills of programmer and the system analyst.
More they are state of the art and scientific oriented, lesser the activities can be performed
on these issues assuming the customer can sustains his or her integrity during the
development process with minor deviations. Category-E (i.e. Other) responses include

software compatibility and dialogue file changes at most.

Fig.4 : What is the distribution of effort required to change errors?

0 /%/ .
i //// L //% B

A B C D E F
where A : Requirements Incorrect or Misunderstood
B: Design Error
Misunderstanding Hérdware Environment
Error in Use of Programming Language

Clerical Errors

2o I v BN © @)

Others

In the above graph, Category A and C, as stated in the previous distribution graph
are of major concern to us. These show us the some percent of unnecessary time spent on
correcting the misunderstood requirements of customer or hardware environment during the
development process. In other words, some portion of these efforts can be eliminated by
f(;cusing more on requirements analysis, whether they are customer oriented requirements
or customer’s hardware requirements. Decreasing the rework time on these issues will
obviously create some slack work force and slack time. These, in turn, could very well be

diverted to some other projects.

Fig.5 : When are the errors. usually detected?

8.2

FIGRE.S

8.1,

i
-y
% %/

%

%

i

:

%

%

%

.

s S N

1

//,

1

1

A B C D E F G H

where A: Pre-Acceptance Test Runs

I @ m m U O W

P

J: Tracing

K: Other

Acceptance Testing

Inspection of Output

System Error Message

Post-Acceptance Testing

Special Debugging Code

Code Reading by Programmer
Code Reading by Other Person

Talks with Other Programmers

I J K

In above graph, we see that errors detected during post-acceptance use of programs

or by a system error message, count 20% of error detection causes and time. 9% for post-

acceptance use can be accepted as low, but a goal shooting for the decrease of this figure

“as much as péssible must be present. High percentage associated with pre-acceptance test
runs (17%), acceptance testing (13%), inspection of output (14%) and code reading by
programmers (10% +4%) give us an idea why quality and reliability sustenance activities are
so costly, as in the case associated with the development of Lotus 1-2-3 version 3 with a

quality control cost of $15 million [16]. However, increasing use of speéial debugging codes

for error detection may very well decrease the costs associated with quality and reliability

B * %%
o /// /

A B C D
where A: During Requirements |
B: During Design
C: During Coding
D: Other
Above graph is an interesting result. Although the previous distribution graphs show

that there are some problems associated with customer-developer interface, above

distribution shows exactly the contrary, stating that requirements analysis are well done such
that only 18% of the errors enter the system during the requirements phase. From the
responses to this question, one is really interesting to quote here:

’...customer don’t know what they want.’

Is this really the case. Unfortunately, low response rate, unabled?c‘; test the different
kinds of hypothesis, that were planned to be tested, associated with the causes of user-
developer interface problems. However, \literature state that, customer and developer are
equally responsible for the introduction of errors to the system during the requirements
analysis phase. Inability of most customers to think technically and usually the lack of a
different perspective among the developers cause the entrance of errors into the system.
Since no data is gathered from the customers, counter hypothesis could not been tested,
which may very well state that;

’...programmers don’t understand what we want.’

Another comment on the above graph is that, developers may not be aware of the
real source of error. For example, a great portion of Category-B may be due to inefficient
design due to insufficient understanding of customer needs. This in turn, an inefficient and
poor design, may easily increase‘ coding errors, resulting with a chain effect. However, these
assumptions can not be verified or rejected, with the current sample size, but can only be
speculated on.

As can be seen, upto now, focal point of our discussion has been the importance of
reqﬁircments analysis and design for the software development projects. In the following

section, some guidelines for overcoming the difficulties associated with the design for

manufacturability of the software projects will be tried to be given.

RECOMMENDATIONS

As can be seen from the analysis above, understanding the requirements of the
customer and designing the software according to the needs of the user are very important
issues. In the following discussion, some guidelines will be stated to overcome these
problems. o

Most of the respondent comments stated the importance of working with modular
development of large scale software projects and the importance of sustaining software
reliability. Importance of working with modular designs is appear to be true with the
reporting of high lines of code used in the current projects which were developed earlier.
Therefore, we will mainly focus on thc modular design improvement and reliability
sustanence aspects of the development process. All of the guidelines-or better to say, the
ideas-stated below are a synthesis of the articles given in the reference section.

The different modules of la_rgé scale programs must be considered early in the design
process because of demands each type of module places on the design. This is one of the
reasons why the design of the program and development process must occur simultaneously.
The use of modules can streamline the production of software since modules can be
developed, built and tested separately [4], [8], [9], [11]. Modules can be developed by
specialized programmers which is especially advantageous if the functions which will be
performed by different modules are within the specialty of a specific programmer or a group.
The optimal method of combining the modules can be chosen early in the design process
if the i)rogram and the development process are designed simultaneously. In other words
combining the modules of a large program can be simplified if one the modules can serve

as a base module upon which others are added. Ideally, the base module must be the one

which is the first module to enter the programming process and all others are added to it
until completl;on [8], [9], [16]. Another important point with the process of combining the
modules is the ease of each module’s independence and easiness to be replaceable.
Programs with independently replaceable modules are easier to upgrade and debug because
they can be debugged without having to modify other modules first. Exte;dmg the module’s
life is another factor important when dealing with modules. Early consideration of program
development and upgrading strategy could be crucial to extending the life of a computer
program [6], [16]. Advances in the hardware and software environment should be anticipated
so the program can be developéd or upgraded without a complete redesign. Modular design
concepts can be used to allow modules that are prone to obsolescence to be replaced with
upgraded ones. Extending program life through upgrading allows large programs generate
even more profit after the development and introduction costs have been paid off. If the
entire program is a collection of pre-tested modules, full program testing may be eliminated
or reduced to only a final go/no-go test before shipment. In designs where potential
rehability problems are concentratedin one module during development, test and diagnostic
attention could be focused on that module. Programs comprised of modules are easier for
maintenance by simply debugging the faulty module [8], [9], [11], [14]-

If confidence on development process control is not high enough to ship program
without testing, the program will need to be tested, prior to shipment. The program must
be designed so that it will allow efficient testing. On very complex programs needing
diagnostics, test development may cost more and take more calendar time than program
development. This was one of the reasons Lotus 1-2-3 version 3 came so late to market [16)].

Diagnostics of Lotus 1-2-3 version 3 cost Lotus more than $15 million. As stated previously,

modules must be structured to allow modules to be tested separately prior to combining
modules [11]. The interaction between modules should be avoided if possible otherwise be
predictable. It can also be useful to be able to test modules separately after combining into
the base program. Tests should be designed to be accomplished quickly by standard test
instruments (such as with special debugging codes), which are easier f&Etam and do not
themselves, need to be debugged, as may be necessary with custom built test instruments.
Sincé testing itself, is not a value-added activity, program reliability goals should be achieved
with the minimum test effort.

Another issue at the moment is the designing for reliability. A program with good
reliability has the freedom from failure in use. The elements of réliability includes
probability, performance, time and usage conditions. If the program has reliability problems,
engineering resources will be depleted by excessive test development [6], [16]. In the worst
cases, reliability problems can force a redesign. In the cases where a large program consists
of extensive number of modules, reliability can be a serious problem, since failure of a single
module may cause the whole program to fail, if the program has redundancy or back-up
features. Other issué with module reliability is how the modules’ are integrated into the
program and how they interact with other modules. Designs should from the beginning have
goals of good integration of modules and minimum chance of interaction between modules.
More program complexity and modules means more attention needs to be paid to the
integration of modules and to minimizing module interaction.

Designing for upgrading and maintenance is also an important issue. The need for

ease of maintenance is proportional to the need for the program to be maintained in the

house or at user. Design principles for ease of maintenance in post-acceptance use of

software may be stricter than pre-acceptance maintenance, due to repetitive design reviews
for already archived programs and due to obsolescent know-how on the program developed
sometime in the past. Therefore testing procedures ‘must have the capacity to diagnose
problems. Anticipating the most likely maintenance tasks and planning for ease of
maintenance and upgrading will érobably help a lot too [8], [9], [14]; _"I"l:us can very well
apply to module removal and/or module reinstallation. Modular maintenance is especially

applicable for modules which need specialized development crew.

APPENDIX

—

Portland State University

Engineering Management Program
P.O. Box 751 Portland, OR 97207-0751

April 26, 1991

Dear Sir/Madam,

As part of the graduate degree requirements in the Engineering Management Program at
Portland State University, we are conducting a study to investigate the sources of design
modifications, reasons for changes and uscr-dcvelopcr interface problems in software
development projects.

We hope that you will be willing to spend a few minutes to answer the enclosed survey.
Your response will be an important contribution to the study. Questionnaires are being sent
to a select group of people in the software development industry in Oregon. The reliability
of the findings depends heavﬂy on the response of each individual.

We will appreciate it very much if you would please rcspond to the enclosed survey and
return it by May 6, 1991.

If you would like to receive a summary of our results, please indicate it by checking the box
at the beginning of the survey. We would be happy to send it to you.

Thank you for taking time to assist us in our study.

Sincerely,

M. Guven IYIGUN, MSEM
Teaching and Research Assistant

Attachment

Phone: (503) 725-4660 FAX: (503) 7254667 BITNET: déemp@psuorvm INTERNET: dbcmp@psuorvm.cc.pdx.cdu

PLEASE FEEL FREE TO DISTRIBUTE COPIES OF THIS SURVEY
Please complete this survey instrument by May 6, 1991 and return to:
M.-Guven IYIGUN |

Engineering Management Program, Portland State University, P.O. Box 751
Portland, OR 97207-0751

Respondent’s Name
Position

Company _
Address L

Would you like to receive a summary of the report : YES NO

NOTE : Throughout this survey,
The term "ERROR" is used as a discrepancy between a specification and its 1mplementatlon
The term "MODIFICATION" is used as the planned changes

Please consider the last software project you have worked on and respond to the following questions:

A. PROJECT CHARACTERISTICS:
1 Time required to finish the project
[1 Less than 3 months (please specify)
(1 3 to 6 months
[1] 6 to 12 months
[1 More than 12 months (please specify)
2, Number of software developers involved i in the project
[] Less than 3
[] 3t06
[] 6to 10
[] More than 10 (please specify,)
3. New lines of code developed (please specify within the applicable range)
[1 Less than 10,000 lines ()
[] 10,000 to 20,000 lines ()
[] 20,000 to 30,000 lines)
[1 More than 30,000 lines (')
4. Lines of code used which were developed before (please specify within the applicable range)
)

[] Less than 10,000 lines (
[] 10,000 to-20,000 lines ()
[] 20,000 to 30,000 lines ()
[] More than 30,000 lines ()
5. Number of modifications 6. Number of errors
[1 Less than S [1] Less than §
[1 Sto 10 [1 Sto10
[] 10to 15 [1] 10 to 15
[] More than 15 [1] More than 15

B. THESE ARE THE CHANGES MOST OFTEN PERFORMED:
(Please rank: 7=most frequently....1=least)
Error Correction
Planned Improvement
Implementation of Requirements Change
Improvement of Clarity, Maintainability or Documentation
Insertion/Deletion of Debug Code
Optimization of Time/Space/Accuracy
Adaptation for Hardware Environment Change
Other ()

e p— ey p— p— p— p— p—
[y Sy Yy Wy y Sy)

C. TIME SPENT TO MAKE CHANGES: (Please rank: 7=most.....1=least)
Error Correction
- Planned Improvement
Implementation of Requirements Change
Improvement of Clarity, Maintainability or Documentation
Insertion/Deletion of Debug Code
Optimization of Time/Space/Accuracy
Adaptation for Hardware Environment Change
Other (])

Pty ey p—— i e f—— o s
(SR T S S e .

D. THESE ARE THE MOST OFTEN PERFORMED ERROR CORRECTION CHANGES:
(Please rank: 5=most frequently....1=least)

Requirements Incorrect or Misunderstood e

Design Error

Misunderstanding Hardware Environment

Error in use of Programming Language

Clerical Errors
*Clerical Errors are the errors that occur in the mechanical translation of an item
from one format to another or from one medium to another’

[1 Other ()

Py p— — r— pr—
[SRy ey)

E. TIME SPENT ON 'ERROR CORRECTION’ CHANGES: (Please rank: 5=most.....1=least)
] Requirements Incorrect or Misunderstood

] Design Error

] Misunderstanding Hardware Environment

] Error in use of Programming Language

] Clerical Errors

] Other ()

R
]
1 Acoeptance testing
] Post-Acceptance use
] Inspection of output
] Code reading by programmer
| Code reading by other person
)| Talks with other programmers
] Special debugging code
| System error message
| Tracing
1 Other ()

G. ERRORS ENTER THE SYSTEM DURING: (Please rank:3=most frequently...l=least)
[1 Requirements
[]1 Design
[] Coding
[1] Other ()

H. ADDITIONAL COMMENTS:

pa— <

--~= wmurh far gnendine vour valuable time to assist ns in our studv:

NUMBER- OF RESPONDENTS

STATISTICS

1l 2l 3] s | sl el 718 9101 |12 |13 |n

At 1t bbb i b il ol ol ol ototi]lolololfo 0.36 0.38 7.85
ol ololol 1 {1 lolo]lolo]ofofofon 0.21 0.23
Mo 0ol ol ol ol olol1lolololo]lol]eoa 0.07 0.08
ol ololololol s loedl s lol ol 1] 0 0.29 0.31

2 T R R T T T T T T T T T T I 0.79 0.79 2.39
o loflolojojlol1ioflolotol 1]o]o 0.14 0.14
0ol ol ol ot ofotolo|l1]loe]oeo]lo]lol]oe 0.07 0.07
0o ol olololotlotlolo]loeolo]lo]lole 0.00 0.00

3 ol a el v ot ol 1]ofo] 2] 1 fo] 1 0.64 0.64 12857
o |l ol ol of ol 0ol ol ol 1] o] o] o] o 014 0.14
o l ol ol olo]lo]lolol1lolo]ofoloa 0,07 0.07
o lol ol o]l otlol1lo]lo]lolofof1]o 0.14 0.14

s Lol vl oot 1l alolodlodlolr]lo] ol 0.36 0.42 20833
ol oj ol 1]l olofjololo]olo]olol]o 0.07 0.08
o ol olo]lo]loldlofolol1]ofi1lolo 0.14 0.17
1t ol 1 loflofl ool 1l 1loflolo]lolo 0.29 | 0.33

s | ol ol ol olololo]lololofolo]ol]o 0.00 0.00 12.86
ol ol ol ol 1l a bt 1ol ol av]lolol of:3 0.36 10.36
o |l sl 1l 1 lol ool o]lo]o]l ol o] o]o 0.21 0.21
1l ololofololol 11 lofl a1l 1]o 0.43 0.43

6 L ol ol vl v i1 lolololol sl ool o] 1 0.36 0.36 10,36
ol ol ol ol o] ololol+1fo]1]o]olo 0.14 0.14
o | 1l o]l ol ol ol ojlo]lofofo]lololdo 0.07 0.07
1 o | o 0 0 1 1 1 o] o] o 1 1 0 0.43 0.43

7l 71l 71 el o | 71313t s sl 71 7]0]s3 4.4 0.19
6l ol sl el 7l el 7l 7l v iolse6i7i]c6 5.64 0.23
s | s el 7] o]l ol el s 6l ol sl 3s]ol]s 3.64 0.15
334l s] ol s3] olal2alz]ls]2]0]s 2.93 0.12
VSR RN T O N O O I I I I O I 0.93 0.04
2l el sl 2| 6 {4l oflafaelel2lsiolecvr 3.64 0.15
12l 2] 31 5| s | ols _.u 4 | 2 4 o 2.50 0.10
0ol olololololojojo}ol]ls/fololeo 0.21 0.01
sl 7l s sl ol s sl el sl 51 2] 4]0l 5| 350 0.14
s | ol 7 lel 7zl sl el zlzlolelz]l 716 5.86 0.21
4l s 1 el 7l ol o 71l 6l 6f ol 613 {o0fs 3.79 0.13
s 3l el el ol ol ol ablalaf sl 2] ofes 2.36 0.08
2l 1l a1 loloj ol 2l adol st slole 0.86 0.03
6 | 61l 31 3] 6!l 4]l ols sl 71515]o0]c7 4.43 0.12
7l 2] 2125 {6l o]l 31 216l516] 0l 3.36 0.09
ol ol ol ol ol ol ofofl ol o] ofol ofeo 0.00 0.00
3 051315 {11310 a3 |s | &l 2jfs |2 3.21 0.26
s | o) 4l 3] 2l o)l 2l 2l a]lofs 13| 0js3 2.64 0.21
1t] 1 2l 1ol ojols) 2lo]l 3] 4] o] 1 1.43 0.11
2l sl s { 4] ol el o{ 3! s | st 11 1|04 2.57 0.21
sl 2l 1l 2l ol s ol 1l 110l 2]ololes 1,64 0.13
ol ol ojololofsf{olols]o]ls|olo 0.93 0.07

ST

et

- . "
o lu o |- Jo Jo jo Ja i v ju jun N o o Jo[TW ju [N o o
Iy
o W {— n jo v jJo (e = v o joo ju N jo o v JuW 1 I e
—
o jw v - Jo e jn jon | N jo o v o Jo | ju I (u 1
-
o (W v 1= ol o v W o o N e Jo o - | o g
—~i
o jw v = jJo I oo jun Jo Jo jo N (= v W Jo o jo jo |- N
—
o juw v 1= jo Jo jJo o jo jo Jo o N jo v o & v |Jo O W
-
o jlw Jo jo jo Jo jo Jo jo Jo jo jo jw |jo jo jun |Jo jo o (n jo
-
o W in = Jo v Joo v jo v jJo |- & oo N o 1= v v I W
-
o w oI - o jn I jOo W |= v 10 |00 N O = N N & U
- .
O ji v J o o jJo Jo jo jJo jo v o o N o 1 e e o v
- -
O jw In v Jo Jo Jo N v v v o v (o oo Jo v = i (i
-
o W v jo Jo J= jun i N jv oo W o o (oo v o = s W N
—~
o jw jo Jo jo jo jo jo jo jlo jo jo (e j© v jo o o |o jo wn
—_
o jW v jJo Jlo N o o - e o v (o o o ju v e W I
=2 LI T L ol L o O T Pl Pl 1ol Pl -l b T £ i LA B (LI (7]
b h N . H o N . N . . - N T
o jo (=3 Wi I o v I o I n = 1o
o |o % o W g g = Jo I = = N |- i 0 3 a3 O
o o Jo lo jo jlo jo jo Jlo jJo Jo jo jo |Jo jo jo jo jo jo jo o
. h . o o . o « N . h . B o b « .
o ut n - o o - o [o — 'y <Q — - (o) — - - ~n ~n
o W 10 o W ton 2 I W » jJo » 0 W IN v eI W W o

[1]

[2]

[3]

(4]

5]

(6]

[7]

REFERENCES

As can be seen some of the following articles are not cited in the body of the paper.
Their main contribution to the paper was in the phase qf developing the survey
questionnaire.

T. Bell, D. Bixler and M. Dyer, ’An Extendable Approach‘ t’(?EbmputCt-AidCd
Software Requirements Engineering’, IEEE Transactions on Software Engineering,
vol.SE-3, January 1977, pp:49-60 |

B.W. Boehm and R. Ross, "'Theory-W Software Project Management: Principles and |

Examples’, IEEE Transactions on Software Engineering, vol.15, no.7, July 1989,

pp:902-915

B.W. Boehm, ’Software and its Impact:A Quantitative Assessment’, Datamation
voL19, May 1973, pp:48-59 |

W.C. Cave and A.B. Salisbury, ’Controlling the Software Life Cycle-The Project
Management Task’, IEEE Transactions on Software Engineering, vol.SE-4, no.4, July
1978, pp:326-334

J.D. Cooper, *Corporate Level Software Management’, JEEE Transactions on

Software Engineering, vol.SE-4, no.4, July 1978, pp:319-326

E.B. Daly, 'Management of Software Development’, IEEE Transactions on Software
Engineering, May 1977, pp:229-242

AM. Davis, E.H. Bersoff and E.R. Comer, A Strategy for Comparing Alternative

" Software Development Life Cycle Models’, IEEE_Transactions on Software

Engineering, vol.14, no.10, October 1988, pp:1453-1461

(8]

%]

[10]

[11]

[12]

[13]

[14]

[15]

(16]

E.W. Dijkstra, A Discipline of Programming, Englewood Ch'ffs, New Jersey, Prentice

Hall, 1976

E.W. Dijkstra, 'Notes on Structured Programming’ in Structured Programming
London, England, Academic Press, 1972

C.W. Doerflinger and V.R. Basili, ’Monitoring Software Devéngment Through
Dynamic Variables’, IEEE Transactions on Software Engineering, vol.SE-11, no.9,
September 1985, pp:978-985

K. Heninger, *Specifying Requirements for’Complex Systems:New Techniques and
Their Application’, JEEE Transactions on Software Eﬁgg'r_leering, vol.SE-6, January
1980, pp:2-13

C.P. Hollocker, ’Finding the Cost of Software Quality’, IEEE Transactions on

Engineering Management, vol. EM-33, no.4, November 1986, pp:223-228

F.N . Parr, ’An Alternative to the Rayleigh Curve Model for Software Development
Effort’, IEEE Transactions on Software Engineering, vol.SE-6, no.3, May 1980, p:291
LH. Putnam, ’A General Empirical Solution to the Macro Software Sizing and

Estimating Problem’, IEEE Transactions on Software Engineering, vol.SE-4, no.4,

July 1978, p:345
C.L. Ramsey and V.R. Basili, ’An Evaluation of Expert Systems for Software

Engineering Management’, IEEE Transactions on Software Engineering, vol.15, no.6,
June 1989, pp:747-759

B.R. Schlender, "How to Break the Software Logjam’, Fortune, September 25, 1989,

pp:100-112

[17]

[18]

[19]

[20]

[21]

R.F. Scott and D.B. Simmons, ’Predicting Programming Group Productivity: A

Communications Model’, IEEE Transactions on Software Engineering, vol.SE-1, no.1,

December 1975, pp:411-414
D.M. Weiss and V.R. Basili, ’A Methodology for Collecting Valid Software
Engineering Data’, IEEE Transactions on Software Engineerin)gw, \-/ol.SE-l(_), no.6,
November 1984, pp:728-738
D.M. Weiss and V.R. Basili, Evaluating Software Development by Analysis of

Changes:Some Data from the Software Engineering Laboratory’, IEEE Transactions

on Software Engineering, vol.SE-11, no.2, February 1985, pp:157-167

R. Wolverton, "The Cost of Developing Large Scale Software’, IEEE Transactions on
Com‘guters, vol.C-23, no.6, 1974
Manufacturers Directory, Resource Guide Oregon High Technology, Oregon &

Southwest Washington

s A i i § AT o
e e e

