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Abstract: This paper explores various proposed methods for
solving a time-constrained traveling salesman problem (TCTSP). A small
(seven city) problem was formulated for use as an illustration for some of
the solution techniques discussed below.
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RO 10N

The classical traveling salesman problem (TSP) has been
widely studied for many years. It determines the shortest route
for a trip, starting in one city, visiting some number of other
cities and returning to the starting city, where all in the
intercity distances are known. However, the presence of
additional constraints, such as time windows in which one or more
of the cities must be visited, can complicate the solution
process for the general TS8P. Thls paper explores varlous
proposed methods for solving a time—constrained traveling
salesman problem (TCTSP). A smalrffse§en—c{ty} problem was

formulated /’_,” “as an illustration for some of the solution

techniques®discussed below.

BACKGROUND

Researchers have studied the classical TSP for many years,
based both on its applications to diverse situations and its
relationship to many other combinatorial optimization problems.?
The general form of the TSP occurs in various situations other
than that of an actual salesman. For example, the same problem
arises in deciding‘the task sequences when the various task-to-
task changeover~£imes differ. Other situations in which the TSP
can be directlyiapplied;include vehicle routing®, job sequencing
and computer wifing,"fhe problem formulations for these types of
problems cqntaini( @bnqSt others): (1) a set of constraints to
impose cdnnectivi%Y?Bf;foutes, and (2) a set of constraints to

impose traversibilipy of the solution.®
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However, in many real world applications, additional
constraints, such as time windows, transportation costs, due
dates, vehicle capacities, etc., must be added to the general TSP
to portray the situation accurately. The addition of these
constraints tends to destroy whatever structure the original
unconstralned problem had.=* Thus, Solutions to the TSP with
additional constraints are often elusive.

The present paper looks at some of the solution techniques
for the general TSP and then at the ways in which some of these
techniques have been extended to help solve the specific

situation of a time-constrained TSP (TCTSP).

PROBLEM DEFINITION

The specific problem under consideration here is the Time-
Constrained TSP (TCTSP), which is a special case of the general
TSP. The TCTSP assumes that there are n cities of interest. A
salesperson based at city 1 must visit each of the remaining n-1
cities exactly once before returning to city 1. Additionally,
however, the TCTSP requires that the visit to each city be made
within specific time windows. Several sets of distinct time
windows (or no time windows) can be specified for each city. The
TCTSP tries to find the sequence of cities, or tour, that visits
each city within an open time window and minimizes the total

length of the tour.=

OREGON EXAMPLE
An example problem for investigating some of the methods of
solving a TSP was formulated based on seven travel destinations

in Oregon. The destinations include: (1) Astoria; (2) Bend; (3)



crater Lake; (4) Portland (the starting and ending clty); (5) The

Dalles; (6) Wallowa Laﬁe; and (7) Yachats. Figure 1 shows the

general location of these cities. "Table 1 shows the distances in
miles between the cities that is used for all calculations. The
problem is first solved as a general TSP. Then some of the
TCTSP—solving'techniques vere reviewed by adding time windows for

the visits to some of the cities.

¥ Crater Lake




Crater Portland The Vallowa Yachats
Lake | Dalles |Lake |
Astoria 335 95 17% 421 130
Bend 107 160 131 348 207
Crater - 250 239 455 264
Lake
Portland 250 -— 83 329 138 1
) |
The 239 83 -- 246 220 |
Dalles ;
Wallowa 455 329 246 - 487 j
Lake §
Yachats 264 138 220 4817 -

CHARACTERISTICS OF THE GENERAL TSP

Size of Problem

One of the major problems that make a general TSPAdifficult
to solve is the large number of possible sequences that must be
examined to arrive at an optimal solution. For a symmetric (ca.
# Csi) n-city tour, there are 1/2[(n~1)11} possible tours.®
Thus, for the seven-city symmetric Oregon tour, there are 360
possible sequénces to evaluate. For an asymmetric 30-city
problem, there would be over 4.4 x 10®° possible sequences.

There is twice the total number of possible tours in an
asymmetric (ciy = Cy1) n-city TSP, or (n-1)!7 The case of
asymmetric costs, which is typical in the scheduling of chenmical
processes, has proven considerably more problematic for

heuristics and has received less attention.®
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Note that for each path, there corresponds a reverse path
x®., For a symmetric TSP, f(x) = £(x®) for all x in the subspace.
Therefore, the minimum path will not be unique (can traverse the

tour in the reverse order).®

NP-Com te

As shown above, the number of possible sequences for a TSP
grows very rapidly as the number of cities increases. 1In
addition, as the problem size increases, the number of
calculations required to solve it quickly grows out of convenient
computation range.

Like almost all problems of vehicle routing and scheduling,
the TSP is classified as NP-complete.*® Computational
complexity theory has provided strong evidence that any
optimizing algorithm for its solution is likely to perform very
poorly on some occasions; more formally, its worst case running
time is likely to grow exponentially with problem size.**

According to the theory of nondeterministic polynomial time
completeness (NP-completeness), if an efficient algorithm can be
found for the TSP, then efficient algorithms could be constructed
for all problems in class NP-complete. An algorithm is deemed
efficient if its execution time is bounded by a polynomial
function written in terms of some reasonable measure of problem
size.*® 8o far, the general TSP has resisted numerous attempts

to solve it efficiently.



BOLUTION TECHNIQUES FOR THE GENERAL TGP
Exact Solution IP Formulation

The TSP has been formulated as integer linear programming
models to get an exact solution to the problem. A useful

formulation of the TSP follows*®:

Min <ECICCa 3Xs (1)
s5.t. By Xu3 =1 i =1 ton (2)
L5 Xay = 1 | i=1ton (3)
us - uy + nxij = n -~ 1 for 2 £ 1 #3 £ n (4)
Xe3 = 0 or 1 for all i, J {5)

uy and uy are arbitrary real numbers

Cis 1is defined to be a large positive number to make sure that
all the x.: will be zero. Constraint (4} is formulated to
prevent the occufrence of subtours.

The dimensions of the formulation do not appear to be
unreasonably large, at least for small problems. There are n
constraints for the sum of the columns to eqgual 1, n constraints
for the sum of the rows to equal one and n{(n-1) for the subtour
prohibition. Therefore, the complete formulation contalns n® + n
constraints and n® variables.**

For the Oregon example problem, there are 56 constraints and
49 variables. The program listing for use with LINDO is included
in Appendix A, along with the results of the model. The
resulting tour, which is optimal at 1273 miles, is shown in
Figure 2.

When solving the formulation with LINDQ, over 1150

iterations and several minutes of computer time were required to



solve the problem. The number of computations requlred to solve
the problem would increase rapidly for a program with more
cities. 1In addition, the LP code would grow accordingly. For
example, a 30-city problem would require 930 constraints and 900
variables. To set up and solve a problem of this size, some sort
of matrix generator would be necessary to the input program for
use by a LP code like LINDO. 1In addition, the maximum size of
the code's constraint and variable set must be taken into
account. For example, the student version of LINDO can only

solve an eight-city problem.

FIGURE 2: OPTIMAL LUTION T EGON P

Hall
Lake

Crater Lake




Explicit Enumeration

Since there are (n-1)! possible ways to order the cities in
an asymmetric TSP, it can ;equire prohibitive amounts of computer
time to enumerate all possible solutions for problems involving
even a fairly small number of cities. (There are over 3.6
million possibilities for a problem with only 10 cities.)

One method for solving large TSP problems and similar
combinatorial problems is to sample from the large number of
possible solutions, using a computer to evaluate some large
number of the possible solutions at random. This is done by
selecting successive random sequences. The average of all the
costs of the sample sequences, the standard deviation of the
costs and the lowest-cost sequence are computed. Then the
probability that another sample will yield a lower cost solution,
and an estimate of how much lower it is likely to be can be
evaluated. When the expected gain is less thén'the cost of
additional sampling, the best solution thus far selected may be

adopted.*=

Brxanch and Bound

Due to the large number of possible combinations of cities,
branch-and-bound methods are often used to implicitly enumerate
all possible solutions to a combinatorial optimization problemn.

If constraint (4) is removed from the above formulatlion, the
remaining relaxation is a standard assignment problem, which can
then be solved using branch and bound techniques. If the optimal
solution to the assignment problem is feasible for the TSP (i.e.,
1f the assignment problem contains no subtours), the optimal

solution to the assignment problem is also optimal.*®¢ If the



asgsignment problem contalns subtours, the minlmum objective value
in the assignment problem is a lower bound for the minimum cost

of a tour.*”

I1f there are any subtours in an assignment solution, the
solution is not a tour assignment. The problem can be solved
using branch and bound, adding two subproblems, with the
constraints X135 = 0 or x3: = 1 for a variable that generated a
subtour. Thus, one subproblem contains the specific element of
the matrix constrained to be part of the solution and the other

subproblem prohibits the same element.®®

Heuristics

Due to the large number of sequences that are possible in
even a relatively small TSP, many practitioners questioned the
need for an exact solution and have instead utilized algorithms
that give an approximation of the optimal solution. This has
resulted in a variety of heuristics for the solution of the
general TSP. There are many heuristics for the general TSP, and
the primary ones that have been extended to help solve the TCTSP

will be discussed here,

Nearest Neighbor - One of the simplest heuristics for
solving the generallTSP is the nearest neighbor heuristic. This
heuristic begins at a city and travels to the nearest city not
yet visited. The tour is completed by returning to the initial
city.

Figure 3 shows the tour generated by using the nearest

neighbor heuristic on the Oregon problem. The total mileage for



Crater Lake

this route was 1465 miles, which is significantly larger than the
1273-mile tour produced by the exact solution. While not
optimal, this number would provide an upper bound on other
solutions, such as the branch and bound. In many practical
situations, the result of the nearest neighbor algorithm is used
as a starting point for some of the other heuristics discussed
below.

Although this heuristic has some drawbacks, its importance

lies in its ability to generate relatively good solutions rapidly
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in problems where the cost of implementing an optimum-seeking
method is prohibitive.*®

The drawbacks to the nearest neighbor heuristic include: (1)
it is sensitive to which city is designated as the origin®<;
(2) unless the graph is complete, the procedure may fail to flnd
a tour even if one exists; and (3) even on complete graphs it can
perform very badly by being forced to choose arcs of very large
weight in the last steps.®* This last drawback is illustrated
in the Oregon tour, where the trip to Wallowa Lake is done at the

very end of the tour and adds many miles to the tour.

Nearest Insertion - The nearest insertion heuristic is used

to build up a closed tour of the cities;22 The method begins
with a randomly selected pair of cities, constituting a tour of
length 2. Then a third city is inserted to minimize the
resulting 3-city tour, then a fourth city is inserted, and so on
until a complete tour has been constructed. This heuristic is
also sensitive to which pair of cities is designated as a seed
and the order in which jobs are considered for insertion.®=
Heuristic rules for these facets of the algorithm have not been
thoroughly explored, but one way to proceed is to repeat the
algorithm several times, each time beginning with a seed pair
that is randomly selected.®* Aalthough the above heuristic
works Qell on small problems, the number of possible insertions
grows quickly and the process become unwieldy for large

problens .®®

k-Interchange - Local search heuristics are also useful for

the general TSP. Given a tour, the k-intexrchange heuristic
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replaces k arcs Iin the tour by k arcs that are not in the tour,
if such a change yields a tour of lower cost. This method is
typically used by starting from a feasible tour produced by
another method (e.g., nearest neighbor, nearest insertion) to see

if the interchanges can be made to improve the tour.=®

mi rammi

The TSP can be solved by using dynamic programming. The
traveler must visit each city exactly once. When there is only
one city to visit, the problem is trivial; simply go from the
current location to the initial city. Dynamic programming works
backwards in this ﬁanner until all the cities have been visited.

Let any stage be indexed by the number of cities that have
already been visited. At any stage, to determine which clty
should next be visited, two things must be known: the current
location and the cities that have already been visited. The
state at any stage consists to the last city visited and the set
of cities that have already been visited. 4We define £(i,8) to be
the minimum distance that must be travelled to complete a tour if
the t-1 cities in the set 8 have been visited and city 1 were the
last city visited.=>

For large TSP's, the state space becomes very large and the
branch-and-bound approach (above and others) is much more
efficient that the dynamic programming approach. For example,
for a 30-city problem, if the solution is at stage 16 (15 cities
have already been visited), there are over 1 billion possible
states. This is a limitation on the practical application of

dynamic programming for moderate-size TSP's. In many problens,
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Given n cities, the model defines a single, nonnegative
variable, ti, to be the time that the traveller visits city 1.
Since the traveller must return to clty 1 at the end of the tour,
the formulation includes an additional variable tn.., to
determine the time at which the tour is completed. The model
assumes that a complete, symnmetric, noﬁnegative distance matrix,
I!digli, is known and that time is a scalar transformation of
distance so that time and distance may be used interchangeably.
Additionally, it assumes that the triangle inequality holds for

the distance measure.

min  ta+a - ta (6)
s.t.
tas - ta 2 das i=2, 3,...,n (1)
|[ts = ts] 2 day i=3,4,...,n; 2 23 < i (8)
tvr = ts 2 das i=2, 3,...,n ' (9)
te 2 0 i =1, 2,...,n¢1 (10)
ls <ty < us i =2, 3,...,n (11)
whére
ts: = the time that the traveller visits city i.
|X| = the absolute value of X
aiJ = the shortest time required to travel from city i to
city 3
1l = the lowver bound on the time window for the traveller
to visit city i. By assumption, all 1l: = O.
u. = the upper bound on the time window for the traveller

to visit city i, us 2 1: for all i.
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This formulation assumes a salngle upper and lower bound for
each time window, but it can be extended to include a set of
distinct time windows for each city, one of which must be
satisfied.

The proposed model appears to be quite concise. It contains
(i) n-1 variables; (ii) 2n-2 linear constraints; (iii) ((n-1)*(n-
2))/2 absolute value constraints; and (iv) n-1 time window
constraints. Thus, for the seven-city Oregon model, there would
be 6 variables, 10 linear constraints, 15 absolute value
constraints and 6 time window constraints.

The solution of the model, however, is complicated by the
presencé of the absolute value constraints. These constraints
introduce both a nondifferentiability and a nonconvexity.
Solutions may be obtained, however, using a branch and bound
procedure.®*

Discrete cases of the proposed model are determined by the
two possible cases of the lt; - tJI > d. 3y absolute value
constraints. These constraints act as the disjunctive
constraints for the branch and bound solution. Given a choice of
one of the cases for each disjunctive constraint in the current
enumeration, the resulting TCTSP model is a linear program. The
solution to each subproblem, therefore, may be obtained by
solving the associated linear program. The branch and bound
solution procedure is initiated by relaxing the absolute value
constraints (3) and the time window constraints (6) of the
proposed TCTSP model.®=

The presence of distinct time windows in a vehicle
scheduling problem allows some simple reductions to be performed

that may reduce the complexity of the solution process. Two

- 16 -



types of reduction procedures are used to preprocess the vehicle
scheduling test set. First, whenever 1. + dsy > u:s for any node
pair (i,3j), node j precedes node 1. Second, each node without a
time window is examined for possible fit between each pair of
nodes for which the time windows were enforced. It the fit is
found to be infeasible, arcs may be eliminated from the
reversible arc list.®®

According to the testing results, the proposed algorithm was
shown to be effective on several small- to moderate-size vehicle
scheduling where a large percentage of the demand points
possessed time windows.®” It appears that the smaller the
percentage of points with time windows, the poorer the results.
This tends to indicate that if the system is very constrained by
the time windows, it is more easily solved. This is most likely
due to the limited number of scheduling decisions that are left
to determine.

For the Oregon model, the time window for Yachats was added
as described above. The LINDQO code was prepared and is included
as Appendix B. However, the implementation of the branch and
bound portion of the problem has not yet been successful. More
work will be required to investigate the performance of this IP

formulation on the Oregon model.

Explicit Enumeration

Since the TCTSP has the same number of possible solution
sequences as the general TSP, it may be possible to enumerate and
test all possible sets of tours. This is true particularly if
certain classes of solution can be eliminated at the beginning as

not feasible.
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The presence of distinct time windows in a vehicle
scheduling problem allows some simple reductions to be performed
that may reduce the complexity of the solution process.®® For
example, the time constraints may set the order of visiting some
cities. Thus, any seqguences which violate this ordering can be
removed from the possible solution set before the problem is
solved. However, if only a few cities have time windows, the
possible solution set may still be prohibitively large to
explicitly enumerate.

Set partitioning approaches are most useful when the number
of candidate tours can be limited due to the restrictive
constraints imposed on the tours (tight time windows, limited

route duration or capacity limitations).®®

Reduction of Possible Schedules Through Dominance

Enumeration techniques used to solve the TCTSP may be
improved by restricting the search to a subset of all possible
sequences, if this can be done without eliminating feasible
sequences.

A method for restricting the set of possible schedules that
need to be examined was proposed by Erschler, Fontan, Merce and
Roubellat.®® The method is based on the concept that some
sequences may dominate others when scheduling n independent jobs
on a single machine with ready times and due dates. The concept
permits a restricted set of schedules, the "most feasible" ones,

to be established using only the ordering of ready times and due

dates.
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A Time-Oriented Nearest Neighbor Heuristlc - This heurlstlc

is an extension of the heuristic for the general TSP. At every
iteration, the heuristic searches for the city "closest" to the
last city added to the tour. The "closeness" nmeasure tries to
account for both geographical and temporal closeness of cities.
It is a measure of the distance between two cities and the time
difference between their respective delivery times, given the
current point in the schedule.®*

The search is performed among all the cities that can
teasibly (with respect to time windows and travel time) be added
to the end of the emerging tour. With this heuristic, a new tour
is started anytime the search fails, unless there are no more
cities to visit. The addition of new tours limits the
suitability of this heuristic for the single-vehicle TCTSP.
Further, the failure of a search with this method does not
necessarily mean that a feasible solution does not exist.

This heuristic was used to solve the Oregon TSP with the
added time window constraint for Yachats. The resulting tour of
1465 miles is shown in FIG. 4. Once again, the use of the
nearest neighbor criteria for adding cities to the end of the
tour resulted in the longest arcs being left to the very end.
Therefore, the visit to Wallowa Lake once again made the tour

route longer than an optimal solution.

Insertion Heuristics - This heuristic appears to hold
promise for the one-vehicle TCTSP. After accounting for the
cities with fixed sequence position due to the time window
constraints, the unvisited cities can be assigned positions in

the sequence.
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FPor each unvisited city, its best feasible insertion place
(with respect to time windows and distance} in the emerging tour
is calculated. Then the best city to insert is selected. For
the situation with time constraints only, the selection of the
city in the tour will be based on the insertion costs to
minimize a measure of total tour distance and time.=*=

The Oregon TSP was solved using this heuristic and the
resulting tour was 1373 miles. It is shown in FIG. 5. This
iilustrates the importance of not being too greedy in the initial

stages of tour development.
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FIGURE 5: INSERTION HEURISTIC FOR OREGON TCTEP

\

Rall
Lake

Crater Lake

Lntg;ghgngﬁ_ﬂggziaﬁlgg - These improvement heuristlcs
attempt, at every iteration, to interchange k arcs in the current
TCTSP solution with k arcs presently not used., Starting from an
initial solution, such as one given by one of the heuristics
described above, time-feaslble k-interchanges are considered
within the tour. A feasible k~interchange is performed if and
only if it provides an improved solution, i.e., it produced at
most the same number of vehicles, and its leads to a reduction in

the routing and scheduling cost (e.g., distance).®®
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Goal Programming

With the inclusion of additional constraints in a TSP, it
may be impossible to find a feasible solution to the problem due
to conflicting time and distance constraints. If a feasible
solution to a TCTSP cannot be found, the problem may be a
candidate for solution by goal programming.

The basic approach of goal programming is to establish a
specific numeric goal for each of the objectives, formulate an
objective function for each objective and then seek a solution
that minimizes the (weighted) sum of deviations of these
objective functions from their respective goals.=*”

Depending on whether some deviation from the constraints is
permissible, the goal program could be formulated to either: (1)
minimize the deviation of the time constraints from the

established windows, or (2} relax the requirement that all n

cities must be visited.

Another technique for an exact solution to the TCTSP has
been described by Christofides et al.®® The technique is based
on the observations that (i) every "routing" problem is
essentially a shortest path problem on some underlying graph with
additional constraints, and (ii) dynamic programming can be used
to solve shortest path problems subject to constraints on an
expanded "state-space graph."

Conslder the TSP defined on the graph G = (X,A) with the
following additional restrictions. With each vertex x. in X we
associate r, "time windows," the kth one being defined by the

pair of times (e.*™, u.®), where e.* < us®, k =1, ... ra. We
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also assume (wlthout loss of generallty) that the "time windows"
are disjoint and ordered for each vertex.

Let 8. be the "processing time" of vertex x,. A TSP tour
starting from a specified vertex x. visiting every other vertex
only once and returning to vertex x. is required. The time of
departure of the traveller from vertex x. is 0 and the time of
visiting vertex x, is t.. A feasible tour is one which satisfies
es™ <ty £ us™ for some k =1, ..., r:1 for every xi € X.

If the traveller goes from vertex xj to vertex x: directly,

the visiting time t. is given by:

either: ts = ts + 81 + C,y4, 1f es™ € ta + 84 + Ccys £ usL®
or: ty = a, ", 1f ua = <ty + 64 + Cy1 £ eyu™
or: t, = o if ty + 81 + Cya > usrt,

We wlsh to find that tour that minimizes the time, T say, of
returning to vertex xi; i.e., we wish to minimize T = timn + 84in +
Cia.

Lgt £(S,xs) be the least duration of a feasible path
starting at x. visiting every vertex in the set S and finishing
at vertex x. (excluding time 8.). For a given S and x. let:

h = min [£(8 - xi,x4) + 81+ + cys1l,

(S-x1,%x3)E0*(S,x1)
where O~*(S,xs) = {S-%X:1,y|y€(s-X1) N R(xa)}.
We now have:
f(s,x.) = h if es™ £ h < uy*
es* if us*"* < h < ey™

® if v > ugvr,
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CONCLUSION

Although both the TSP and the TCTSP are easy to state and
understand, they both unleash a wide varlety of problems as the
number of cities to be visited grows. The solution of the TCTSP
appears to differ depending on the number of cities with time
constraints. At one end of the spectrum, when only a few of the
cities have time windows, the problem is basically a routing
problem. The tour can be broken into segments and the cities
without time windows inserted into the order in a fairly concise
manner. At the other end of the spectrum, when a large number of
the cities have time constraints, the problem is primarily a
scheduling problem. The time-constrained cities are ordered, and
the relatively few remaining cities are fit into the schedule as
well as possible. There may be very few choices for the position
on the non-constrained cities, so the problem may become almost
trivial.

The stickiest problems appear to arise when there are about
equal number of cities with time constraints and cities without.
With this situation, most of the solution techniques seem to get
overwvhelmed by the number of possible combinations which need to
be tested. Therefore, it appears that more research is required
on both the routing problem and the scheduling problem so that
their solution techniques can converge into a good solution to

the TCTSP.
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