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Abstract:  This paper explores various proposed methods for 
solving a time-constrained traveling salesman problem (TCTSP). A small 
(seven city) problem was formulated for use as an illustration for some of 
the solution techniques discussed below. 
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INTROPUCTION 

The classical traveling salesman problem (TSP) has been 

widely studied for many years. It determines the shortest route 

for a trip, starting in one city, visiting some number of other 

cities and returning to the starting city, where all in the 

intercity distances are known. However, the presence of 

additional constraints, such as time windows in which one or more 

of the cities must be visited, can complicate the solution 

process for the general TSP. This paper explores various 

proposed methods for solving a time-constrained traveling 

salesman problem (TCTSP). A small' (seven-c\ty) problem was 
... 

formulate;d:i]:or Ui;>EL as an illustration for some of the solution 
r'-'• .•• - - -\ 

techniques£~1"s.~h;;ed below. 

BACKGROUND 

Researchers have studied the classical TSP for many years, 

based both on its applications to diverse situations and its 

relationship to many other combinatorial optimization problems. 1 

The general form of the TSP occurs in various situations other 

than that of an actual salesman. For example, the same problem 

arises in deciding the task sequences when the various task-to

task changeover times differ. Other situations in which the TSP 

can be directly applied include vehicle routing2 , job sequencing 

and computer wiring. The problem formulations for these types of 

problems contain,C~mong~t others): (1) a set of constraints to 

impose connectivity~£ routes, and (2) a set of constraints to 

impose traversibllity of the solution. 3 
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However, in many real world applications, additional 

constraints, such as time windows, transportation costs, due 

dates, vehicle capacities, etc., must be added to the general TSP 

to portray the situation accurately. The addition of these 

constraints tends to destroy whatever structure the original 

unconstrained problem had. 4 Thus, solutions to the TSP with 

additional constraints are often elusive. 

The present paper looks at some of the solution techniques 

for the general TSP and then at the ways in which some of these 

techniques have been extended to help solve the specific 

situation of a time-constrained TSP (TCTSP). 

PROBLEM DEFINITION 

The specific problem under consideration here is the Time

Constrained TSP (TCTSP), which is a special case of the general 

TSP. The TCTSP assumes that there are n cities of interest. A 

salesperson based at city 1 must visit each of the remaining n-1 

cities exactly once before returning to city 1. Additionally, 

however, the TCTSP requires that the visit to each city be made 

within specific time windows. Several sets of distinct time 

windows (or no time windows) can be specified for each city. The 

TCTSP tries to find the sequence of cities, or tour, that visits 

each city within an open time window and minimizes the total 

length of the tour.~ 

OREGON EXAMPLE 

An example problem for investigating some of the methods of 

solving a TSP was formulated based on seven travel destinations 

in Oregon. The destinations include: (1) Astoria; (2) Bend; (3) 
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crater Lake; (4) Portland (the star:tlnq and endlnq city); (5) The 
Dalles; (6) Wallowa Lake; and (7) Yachats. Figure 1 shows the 

general location of these cities. Table 1 shows the distances in 

miles between the cities that is used for all calculations. The 

problem is first solved as a general TSP. Then some of the 

TCTSP-solving techniques were reviewed by adding time windows for 

the visits to some of the cities. 

FIGURE 1; OREGON TRAVELING SALESMAN PROBLEM 

Astor 

\ * Crater late 
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TABI,E 1 : DI fl'.l'ANCES FOR OREGON TSP 

. -
Astoria Bend cr~~ortl~n~· The Wallowa Yachats 

Lake Dalles Lake 

Astoria -- 255 I 335 95 175 421 130 

Bend 255 -- I 107 160 131 348 207 . 
Crater 335 107 -- 250 239 455 264 
Lake 

Portland 95 160 250 -- 83 329 138 

The 175 131 239 83 -- 246 220 
Dalles 

Wallowa 421 348 455 329 246 -- 487 
Lake 

Yachats 130 207 264 138 220 487 --

CHARACTERISTICS OF THE GENERAL TSP 

Size of Problem 

One of the major problems that make a general TSP difficult 

to solve is the large number of possible sequences that must be 

examined to arrive at an optimal solution. For a symmetric (c~J 

1 CJ~> n-city tour, there are l/2[(n-l)l} possible tours. 6 

Thus, for the seven-city symmetric Oregon tour, there are 360 

possible sequences to evaluate. For an asymmetric 30-city 

problem, there would be over 4.4 x 1030 possible sequences. 

There is twice the total number of possible tours in an 

asymmetric (c~J =CJ~) n-city TSP, or (n-1)! 7 The case of 

asymmetric costs, which is typical in the scheduling of chemical 

processes, has proven considerably more problematic for 

heuristics and has received less attention. 0 
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Note that for each path, there corresponds a reverse path 

xR. For a symmetric TSP, f (x) = f(xR) for all x in the subspace. 

Therefore, the minimum path will not be unique (can traverse the 

tour in the reverse order). 9 

NP-Complete 

As shown above, the number of possible sequences for a TSP 

grows very rapidly as the number of cities increases. In 

addition, as the problem size increases, the number of 

calculations required to solve it quickly grows out of convenient 

computation range. 

Like almost all problems of vehicle routing and scheduling, 

the TSP is classified as NP-complete. 1 ° Computational 

complexity theory has provided strong evidence that any 

optimizing algorithm for its solution is likely to perform very 

poorly on some occasions; more formally, its worst case running 

time is likely to grow exponentially with problem size. 11 

According to the theory of nondeterministic polynomial time 

completeness (NP-completeness), if an efficient algorithm can be 

found for the TSP, then efficient algorithms could be constructed 

for all problems in class NP-complete. An algorithm is deemed 

efficient if its execution time is bounded by a polynomial 

function written in terms of some reasonable measure of problem 

size. 12 So far, the general TSP has resisted numerous attempts 

to solve it efficiently. 
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sor.UTION TECHNIQUES FOR THE GBiNERAt. Tse 

Exact Solution IP Formulation 

The TSP has been formulated as integer linear programming 

models to get an exact solution to the problem. A useful 

formulation of the TSP follows 13
: 

Min EEC:1. .JX:t. .J 

s.t. E:1. X:1. .J = 1 j = 1 to n 

E.J X:1. .J = 1 i = 1 to n 

U:1. - U.J + nxij s n - 1 for 2 s i t- j s n 

X:1. .J = 0 or 1 for all i, j 

U:1. and U.J are arbitrary real numbers 

( 1) 

( 2 ) 

( 3) 

( 4 ) 

( 5) 

C:1.:1. is defined to be a large positive number to make sure that 

all the X:1.:1. will be zero. Constraint (4) is formulated to 

prevent the occurrence of subtours. 

The dimensions of the formulation do not appear to be 

unreasonably large, at least for small problems. There are n 

constraints for the sum of the columns to equal 1, n constraints 

for the sum of the rows to equal one and n(n-1) for the subtour 

prohibition. Therefore, the complete formulation contains n2 + n 

constraints and n 2 variables. 14 

For the Oregon example problem, there are 56 constraints and 

49 variables. The program listing for use with LINDO is included 

in Appendix A, along with the results of the model. The 

resulting tour, which is optimal at 1273 miles, is shown in 

Figure 2. 

When solving the formulation with LINDO, over 1150 

iterations and several minutes of computer time were required to 
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solve the problem. The number of computations required to solve 

the problem would increase rapidly for a program with more 

cities. In addition, the LP code would grow accordingly. For 

example, a 30-city problem would require 930 constraints and 900 

variables. To set up and solve a problem of this size, some sort 

of matrix generator would be necessary to the input program for 

use by a LP code like LINDO. In addition, the maximum size of 

the code's constraint and variable set must be taken into 

account. For example, the student version of LINDO can only 

solve an eight-city problem. 

FIGURE 2: OPTIMAL SOLUTION TO OREGON TSP 

/ 

/ 

Crater Lake 
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Explicit Enumeration 

Since there are (n-l)l possible ways to order the cities in 

an asymmetric TSP, it can require prohibitive amounts of computer 

time to enumerate all possible solutions for problems involving 

even a fairly small number of cities. (There are over 3.6 

million possibilities for a problem with only 10 cities.) 

One method for solving large TSP problems and similar 

combinatorial problems is to sample from the large number of 

possible solutions, using a computer to evaluate some large 

number of the possible solutions at random. This is done by 

selecting successive random sequences~ The average of all the 

costs of the sample sequences, the standard deviation of the 

costs and the lowest-cost sequence are computed. Then the 

probability that another sample will yield a lower cost solution, 

and an estimate of how much lower it is likely to be can be 

evaluated. When the expected gain is less than the cost of 

additional sampling, the best solution thus far selected may be 

adopted. 15 

Branch and Bound 

Due to the large number of possible combinations of cities, 

branch-and-bound methods are often used to implicitly enumerate 

all possible solutions to a combinatorial optimization problem. 

If constraint (4) is removed from the above formulation, the 

remaining relaxation is a standard assignment problem, which can 

then be solved using branch and bound techniques. If the optimal 

solution to the assignment problem is feasible for the TSP (i.e., 

if the assignment problem contains no subtours), the optimal 

solution to the assignment problem is also optimal.~- If the 
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assignment problem contalna aubtours, the minimum objective value 

in the assignment problem is a lower bound for the minimum cost 

of a tour. 17 

If there are any subtours in an assignment solution, the 

solution is not a tour assignment. The problem can be solved 

using branch and bound, adding two subproblems, with the 

constraints X1J = 0 or XJ1 = 1 for a variable that generated a 

subtour. Thus, one subproblem contains the specific element of 

the matrix constrained to be part of the solution and the other 

subproblem prohibits the same element. 19 

Heuristics 

Due to the large number of sequences that are possible in 

even a relatively small TSP, many practitioners questioned the 

need for an exact solution and have instead utilized algorithms 

that give an approximation of the optimal solution. This has 

resulted in a variety of heuristics for the solution of the 

general TSP. There are many heuristics for the general TSP, and 

the primary ones that have been extended to help solve the TCTSP 

will be discussed here. 

Nearest Neighbor - One of the simplest heuristics for 

solving the general TSP is the nearest neighbor heuristic. This 

heuristic begins at a city and travels to the nearest city not 

yet visited. The tour is completed by returning to the initial 

city. 

Figure 3 shows the tour generated by using the nearest 

neighbor heuristic on the Oregon problem. The total mileage for 
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FIGURE 3; NEAREST NEIGHBOR SOI,UTION TO OREGON TSP 

Vacha ts 

' ~~t8ftel~~rfh~H-1Es----..::::::::::::::::==.:=--4 Wall~ 
Lake 

this route was 1465 miles, which is significantly larger than the 

1273-mile tour produced by the exact solution. While not 

optimal, this number would provide an upper bound on other 

solutions, such as the branch and bound. In many practical 

situations, the result of the nearest neighbor algorithm is used 

as a starting point for some of the other heuristics discussed 

below. 

Although this heuristic has some drawbacks, its importance 

lies in its ability to generate relatively good solutions rapidly 
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in problems where the cost of implementing an optimum-seeking 

method is prohibitive. 19 

The drawbacks to the nearest neighbor heuristic include: (1) 

it ls sensitive to which city is designated as the orlgln20
; 

(2) unless the graph is complete, the procedure may fail to find 

a tour even if one exists; and (3) even on complete graphs it can 

perform very badly by being forced to choose arcs of very large 

weight in the last steps. 21 This last drawback is illustrated 

in the Oregon tour, where the trip to Wallowa Lake is done at the 

very end of the tour and adds many miles to the tour. 

Nearest Insertion - The nearest insertion heuristic is used 

to build up a closed tour of the cities. 22 The method begins 

with a randomly selected pair of cities, constituting a tour of 

length 2. Then a third city is inserted to minimize the 

resulting 3-city tour, then a fourth city ls inserted, and so on 

until a complete tour has been constructed. This heuristic is 

also sensitive to which pair of cities is designated as a seed 

and the order in which jobs are considered for insertlon. 23 

Heuristic rules for these facets of the algorithm have not been 

thoroughly explored, but one way to proceed is to repeat the 

algorithm several times, each time beginning with a seed pair 

that is randomly selected. 24 Although the above heuristic 

works well on small problems, the number of possible insertions 

grows quickly and the process become unwieldy for large 

problems. 25 

k-Interchange - Local search heuristics are also useful for 

the general TSP. Given a tour, the k-interchange heuristic 
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replaces k arcs in the tour by k arcs that are not in the tour, 

if such a change yields a tour of lower cost. This method is 

typically used by starting from a feasible tour produced by 

another method (e.g., nearest neighbor, nearest insertion) to see 

if the interchanges can be made to improve the tour. 2
G 

Dynamic Programming 

The TSP can be solved by using dynamic programming. The 

traveler must visit each city exactly once. When there is only 

one city to visit, the problem is trivial; simply go from the 

current location to the initial city. Dynamic programming works 

backwards in this manner until all the cities have been visited. 

Let any stage be indexed by the number of cities that have 

already been visited. At any stage, to determine which city 

should next be visited, two things must be known: the current 

location and the cities that have already been visited. The 

state at any stage consists to the last city visited and the set 

of cities that have already been visited. We define f(i,S) to be 

the minimum distance that must be travelled to complete a tour if 

the t-1 cities in the set S have been visited and city i were the 

last city visited. 27 

For large TSP's, the state space becomes very large and the 

branch-and-bound approach (above and others) is much more 

efficient that the dynamic programming approach. For example, 

for a 30-city problem, if the solution is at stage 16 (15 cities 

have already been visited), there are over 1 billion possible 

states. This is a limitation on the practical application of 

dynamic programming for moderate-size TSP's. In many problems, 
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Given n cities, the model defines a single, nonnegative 

variable, t:1., to be the time that the traveller visits city i. 

Since the traveller must return to city 1 at the end of the tour, 

the formulation includes an additional variable tn+1, to 

determine the time at which the tour is completed. The model 

assumes that a complete, symmetric, nonnegative distance matrix, 

I Jd:1.41 j, is known and that time is a scalar transformation of 

distance so that time and distance may be used interchangeably. 

Additionally, it assumes that the triangle inequality holds for 

the distance measure. 

where 

min tn+1 - t:i. 

s.t. 

t:1. - t:i. ~ d:i.:1. i = 2, 3 1 • • •In 

lt:1. - t41 ~ d:1. J i = 3, 4 I , , •In; 2 ~ j < 

tn+:I. - t:1. ~ d:1. :I. i = 2, 3, •.• , n 

t:1. ~ 0 i = 1, 2, .•• ,n+l 

1:1. <t:1. < U:1. i = 2, 3 I • • •In 

t:1. = the time that the traveller visits city i. 

IX! = the absolute value of x 

( 6 ) 

( 7 ) 

i ( 8) 

( 9) 

(10) 

(11) 

d:1.4 = the shortest time required to travel from city i to 

city j 

1:1. = the lower bound on the time window for the traveller 

to visit city i. By assumption, all 1:1. ~ O. 

U:1. = the upper bound on the time window for the traveller 

to visit city i, u:1. ~ 11 for all i. 
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This formulation assumes a single upper and lower bound for 

each time window, but it can be extended to include a set of 

distinct time windows for each city, one of which must be 

satisfied. 

The proposed model appears to be quite concise. It contains 

(i) n-1 variables; (ii) 2n-2 linear constraints; (iii) ((n-l)*(n-

2))/2 absolute value constraints; and (iv) n-1 time window 

constraints. Thus, for the seven-city Oregon model, there would 

be 6 variables, 10 linear constraints, 15 absolute value 

constraints and 6 time window constraints. 

The solution of the model, however, is complicated by the 

presence of the absolute value constraints. These constraints 

introduce both a nondifferentiability and a nonconvexity. 

Solutions may be obtained, however, using a branch and bound 

procedure. 34 

Discrete cases of the proposed model are determined by the 

two possible cases of the It~ - tjl ~ d~j absolute value 

constraints. These constraints act as the disjunctive 

constraints for the branch and bound solution. Given a choice of 

one of the cases for each disjunctive constraint in the current 

enumeration, the resulting TCTSP model is a linear program. The 

solution to each subproblem, therefore, may be obtained by 

solving the associated linear program. The branch and bound 

solution procedure is initiated by relaxing the absolute value 

constraints (3) and the time window constraints (6) of the 

proposed TCTSP model. 35 

The presence of distinct time windows in a vehicle 

scheduling problem allows some simple reductions to be performed 

that may reduce the complexity of the solution process. Two 

- 16 -



types of reduction procedures are used to preprocess the vehicle 

scheduling test set. First, whenever 11 + d1J > u1 for any node 

pair (i,j), node j precedes node l. Second, each node without a 

time window is examined for possible fit between each pair of 

nodes for which the time windows were enforced. It the fit is 

found to be infeasible, arcs may be eliminated from the 

reversible arc list. 36 

According to the testing results, the proposed algorithm was 

shown to be effective on several small- to moderate-size vehicle 

scheduling where a large percentage of the demand points 

possessed time windows. 37 It appears that the smaller the 

percentage of points with time windows, the poorer the results. 

This tends to indicate that if the system is very constrained by 

the time windows, it is more easily solved. This ls most likely 

due to the limited number of scheduling decisions that are left 

to determine. 

For the Oregon model, the time window for Yachats was added 

as described above. The LINDO code was prepared and is included 

as Appendix B. However, the implementation of the branch and 

bound portion of the problem has not yet been successful. More 

work will be required to investigate the performance of this IP 

formulation on the Oregon model. 

Explicit Enumeration 

Since the TCTSP has the same number of possible solution 

sequences as the general TSP, it may be possible to enumerate and 

test all possible sets of tours. This is true particularly if 

certain classes of solution can be eliminated at the beginning as 

not feasible. 
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The presence of distinct time windows in a vehicle 

scheduling problem allows some simple reductions to be performed 

that may reduce the complexity of the solution process. 39 For 

example, the time constraints may set the order of visiting some 

cities. Thus, any sequences which violate this ordering can be 

removed from the possible solution set before the problem is 

solved. However, if only a few cities have time windows, the 

possible solution set may still be prohibitively large to 

explicitly enumerate. 

Set partitioning approaches are most useful when the number 

of candidate tours can be limited due to the restrictive 

constraints imposed on the tours (tight time windows, limited 

route duration or capacity limitations). 3~ 

Reduction of Possible Schedules Through Dominance 

Enumeration techniques used to solve the TCTSP may be 

improved by restricting the search to a subset of all possible 

sequences, if this can be done without eliminating feasible 

sequences. 

A method for restricting the set of possible schedules that 

need to be examined was proposed by Erschler, Fontan, Merce and 

Roubellat. 40 The method is based on the concept that some 

sequences may dominate others when scheduling n independent jobs 

on a single machine with ready times and due dates. The concept 

permits a restricted set of schedules, the "most feasible" ones, 

to be established using only the ordering of ready times and due 

dates. 

- 18 -



A Time-oriented Nearest Neighbor Heuristic - This heuristic 

is an extension of the heuristic for the general TSP. At every 

iteration, the heuristic searches for the city "closest" to the 

last city added to the tour. The "closeness" measure tries to 

account for both geographical and temporal closeness of cities. 

It is a measure of the distance between two cities and the time 

difference between their respective delivery times, given the 

current point in the schedule. 44 

The search is performed among all the cities that can 

feasibly (with respect to time windows and travel time) be added 

to the end of the emerging tour. With this heuristic, a new tour 

is started anytime the search fails, unless there are no more 

cities to visit. The addition of new tours limits the 

suitability of this heuristic for the single-vehicle TCTSP. 

Further, the failure of a search with this method does not 

necessarily mean that a feasible solution does not exist. 

This heuristic was used to solve the Oregon TSP with the 

added time window constraint for Yachats. The resulting tour of 

1465 miles is shown in FIG. 4. Once again, the use of the 

nearest neighbor criteria for adding cities to the end of the 

tour resulted in the longest arcs being left to the very end. 

Therefore, the visit to Wallowa Lake once again made the tour 

route longer than an optimal solution. 

Insertion Heuristics - This heuristic appears to hold 

promise for the one-vehicle TCTSP. After accounting for the 

cities with fixed sequence position due to the time window 

constraints, the unvisited cities can be assigned positions in 

the. sequence. 
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FIGURE 4: TIME-CONSTRAINED NEAREST NEIGHBOR HEURISTIC 

For each unvisited city, its best feasible insertion place 

(with respect to time windows and distance) in the emerging tour 

is calculated. Then the best city to insert is selected. For 

the situation with time constraints only, the selection of the 

city in the tour will be based on the insertion costs to 

minimize a measure of total tour distance and time. 45 

The Oregon TSP was solved using this heuristic and the 

resulting tour was 1373 miles. It is shown in FIG. 5. This 

illustrates the importance of not being too greedy in the initial 

stages of tour development. 
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FIGURE 5: INSERTION HEURISTIC FOR OREGON TCTSP 

. I {; 
I 

Crater Lake 

Interchange Heuristics - These improvement heurist.ics 

attempt, at every iteration, to interchange k arcs in the current 

TCTSP solution with k arcs presently not used. Starting fr-0m an 

initial solution, such as one given by one of the heuristics 

described above, time-feasible k-interchanges are considered 

within the tour. A feasible k-interchange is performed if and 

only if it provides an improved solution, i.e., it produced at 

most the same number of vehicles, and its leads to a reducti-0n in 

the routing and scheduling cost (e.g., distance). 4 & 
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Goal Programming 

With the inclusion of additional constraints in a TSP, it 

may be impossible to find a feasible solution to the problem due 

to conflicting time and distance constraints. If a feasible 

solution to a TCTSP cannot be found, the problem may be a 

candidate for solution by goal programming. 

The basic approach of goal programming is to establish a 

specific numeric goal for each of the objectives, formulate an 

objective function for each objective and then seek a solution 

that minimizes the (weighted) sum of deviations of these 

objective functions from their respective goals. 47 

Depending on whether some deviation from the constraints is 

permissible, the goal program could be formulated to either: (1) 

minimize the deviat.ion of the time constraints from the 

established windows, or (2) relax the requirement that all n 

cities must be visited. 

TCTSP Space State Relaxation Method/Dynamic Programming 

Another technique for an exact solution to the TCTSP has 

been described by Christofides et al. 46 The technique is based 

on the observations that (i) every "routing" problem is 

essentially a shortest path problem on some underlying graph with 

additional constraints, and (ii) dyn?mic programming can be used 

to solve shortest path problems subject to constraints on an 

expanded "state-space graph." 

Consider the TSP defined on the graph G = (X,A) with the 

following additional restrictions. With each vertex Xi in X we 

associate ri "time windows," the kth one being defined by the 

pair of times (eik, uik), where eik < uik, k = 1, ... ri. We 
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also assume (without loss of generality) that the "time windows" 

are disjoint and ordered for each vertex. 

Let 6~ be the "processing time" of vertex x~. A TSP tour 

starting from a specified vertex x~ visiting every other vertex 

only once and returning to vertex x~ is required. The time of 

departure of the traveller from vertex X1 is 0 and the time of 

visiting vertex x~ is t~. A feasible tour is one which satisfies 

e~k st~ s u~k for some k = 1, ... , r~ for every x~ € X. 

If the traveller goes from vertex Xj to vertex x~ directly, 

the visiting time t~ is given by: 

either: 

or: 

or: 

We wish to find that tour that minimizes the time, T say, of 

returning to vertex x~; i.e., we wish to minimize T : t~n + 6~n + 

c~ 1 • 

Let f (s,x~) be the least duration of a feasible path 

starting at X1 visiting every vertex in the set s and finishing 

at vertex x~ (excluding time 6~ ). For a givens and x~ let: 

h =min [f(S - xi,xJ) + 6~ + Cj~], 
cs-x~,xj>e0- 1 cs,x~> 

where 

We now have: 

f(s,x~) = h if e~"' s h s U1. 1< 

e~"' if u~"'-1 < h s e~"' 

(D if h > u Y' 1. 
~ . 
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CONCLUSION 

Although both the TSP and the TCTSP are easy to state and 

understand, they both unleash a wide variety of problems as the 

number of cities to be visited grows. The solution of the TCTSP 

appears to differ depending on the number of cities with tlme 

constraints. At one end of the spectrum, when only a few of the 

cities have time windows, the problem is basically a routing 

problem. The tour can be broken into segments and the cities 

without time windows inserted into the order in a fairly concise 

manner. At the other end of the spectrum, when a large number of 

the cities have time constraints, the problem is primarily a 

scheduling problem. The time-constrained cities are ordered, and 

the relatively few remaining cities are fit into the schedule as 

well as possible. There may be very few choices for the position 

on the non-constrained cities, so the problem may become almost 

trivial. 

The stickiest problems appear to arise when there are about 

equal number of cities with time constraints and cities without. 

With this situation, most of the solution techniques seem to get 

overwhelmed by the number of possible combinations which need to 

be tested. Therefore, it appears that more research is required 

on both the routing problem and the scheduling problem so that 

their solution techniques can converge into a good solution to 

the TCTSP. 
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MIN 100000 X11 + 255 X12 + 335 X13 + 95 X14 + 175 X15 + 421 X16 
+ 130 X17 + 255 X21 + 100000 X22 + 107 X23 + 160 X24 + 131 X25 
+ 348 X26 + 207 X27 + 335 X31 + 107 X32 + 100000 X33 + 250 X34 
+ 230 X35 + 455 X36 + 264 X37 + 95 X41 + 160 X42 + 250 X43 
+ 100000 X44 + 83 X45 + 329 X46 + 138 X47 + 175 X51 + 131 X52 
+ 239 X53 + 83 X54 + 100000 X55 + 246 X56 + 220 X57 + 421 X61 
+ 348 X62 + 455 X63 + 329 X64 + 246 X65 + 100000 X66 + 220 X67 
+ 130 X71 + 207 X72 + 264 X73 + 138 X74 + 220 X75 + 487 X76 
+ 100000 X77 

SUBJECT TO 

4) 
5) 
5) 
7) 
8) 
'3) 

10) 
11) 

12) 
13) 
14) 
15) 
16) 
17) 
18) 
19) 
20) 
:::-~ 1) 

:23) 
24) 
25) 
26) 
27) 
::-:::8) 
2'3) 
30) 
31) 

33) 
34) 
35) 
36) 
37) 
38) 
3t3) 

Xll + X12 + X13 + Xl.4 + X15 + X16 + X17 -
X21 + X22 + X23 + X24 + X25 + X26 + X27 -
X31 + X32 + X33 + X34 + X35 + X36 + X37 = 
X41 + X42 + X43 + X44 + X45 + X46 + X47 -
X51 + X52 + X53 + X54 + X55 + X56 + X67 = 
X61 + X62 + X63 + X64 + X65 + X66 + X67 -
X71 + X72 + X73 + X74 + X75 + X76 + X77 = 
Xll + X21 + X31 + X41 + X51 + X61 + X71 = 
X12 + X22 + X32 + X42 + X52 + X62 + X72 = 
X13 + X23 + X33 + X43 + X53 + X63 + X73 = 
X14 + X24 + X34 + X44 + X54 + X64 + X74 -
X15 + X25 + X35 + X45 + X55 + X65 + X75 -
X16 + X26 + X36 + X46 + X56 + X66 + X76 = 
X17 + X27 + X37 + X47 + X57 + X67 + X77 -
7 X23 + U2 - U3 <= 6 
7 X24 + U2 - U4 <= 6 
7 X25 + U2 U5 <= 6 
7 X26 + U2 - U6 <= 6 
7 X27 + U2 - U7 <= 6 
7 X32 LJ? + U3 <= 6 
7 X34 + U3 U4 <= 6 
7 X35 + U3 - U5 <= 6 
7 X36 + U3 U6 <= 6 
7 X37 + U3 - U7 <= 6 
7 X42 - U2 + U4 <= 6 
7 X43 U3 + U4 <= 6 
7 X45 + U4 - U5 <= 6 
7 X46 + U4 - U6 <= 6 
7 X47 + U4 - U7 <= 6 
7 X52 - LJ2 + U5 <= 6 
7 X53 U3 + U5 <= 6 
7 X54 U4 + U5 <= 6 
7 X56 + U5 U6 <= 6 
7 X57 + U5 U7 <= 6 
7 X62 - U2 + U6 <= 6 
7 X63 - U3 + LJ6 <= 6 
7 X64 - U4 + U6 <= 6 
7 X65 U5 + U6 <= 6 
7 X67 + U6 - U7 <= 6 
7 X72 U2 + U7 <= 6 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
l 
1 
1 
1 

• 
END 
J:NTE 

40) 
41) 
42) 
43) 
44) 
45) 

7 X73 - U3 + U7 <= 6 
7 X74 U4 + U7 <= 6 
7 X75 - U5 + U7 <= 6 
7 X76 U6 + LJ7 <= 6 APPE~btJC 

49 

LP OPTIMUM FOUND AT STEP 31 
OBJECTIVE VALUE - 1125.42900 
FIX i-1LL VAF:S. ( l 7) t,.J I TH F.:C 
SET X73 TO <= 0 AT 
SET X62 TO >~ 1 AT 

> l. ()(l. C)(l() 

1 1 BND::: -1127. 
2, BND= -·1273. 

A 
TWIN= -1253. 
TWIN= -·1130. 

NEW INTEGER SOLUTION OF 1273.00000 AT BF.~ANCH ·:::· p·rvnT 

68 
105 

1 nc:: 



OBJECTIVE FUNCTION VALUE 

1) 1273.00000 

VARIABLE 
X11 
x 12 
X13 
X14 
X15 
Xlfi.. 
X17 
X21 

X24 
X25 
X26 
X27 
X31 
X32 
X33 
X34 
X35 
X36 
X37 
X41 
X42 

X44 
X45 
X46 
X47 
X51 
X-52 
X53 
X54 
X55 
X56 
X57 
X61 
X62 
X63 
X64 
X65 
X66 
X67 
X71 
X72 
X73 
X74 
X75 
X76 
X77 

U·-·· ..:.:. 

U4 
U5 
UE. 
LJ7 

ROW 
2) 
3) 

VALUE 
.000000 
.000000 
• 000000 

1.000000 
.000000 
.000000 
.000000 
.000000 
.000000 

1.000000 
.000001) 
.000000 
.000000 
.000000 
.000000 
.000000 
.000000 
.000000 
.000000 
.000000 

1.000000 
.000000 
.000000 
.000000 
.000000 

1 . 000000 
.000000 
.000000 
.000000 
.000000 
.000000 
.000000 
.000000 

1.000000 
.000000 
.000000 

1.000000 
.000000 
.000000 
.000000 
.000000 
.000000 

1.000000 
.000000 
.000000 
.000000 
.000000 
.000000 
.000000 

4.000000 
5.000000 

.000000 
1.000000 
2.000000 
E.000000 

BLACK OR SURPLUS 
.000000 
.000000 

F.:EDUCED COST 
·::r3'304. 000000 

2'34. 000000 
84.000000 

.000000 
'31. 000000 

163.000000 
.000000 

112.000000 
'3'3'392. 000000 

-191.000000 
18.000000 

.000000 
43.000000 
30.000000 
93.000000 

.000000 
99603.000000 

"3. 000000 
.000000 

51.000000 
-12.000000 

.000000 
200.000000 

• 000000 
'39906. 000000 

. 000(H)(l 
7:2.000000 

"3. 0000(10 
91.000000 

:1.82. 000000 
.000000 
.000000 

'3'3'328. 000000 
.000000 
.000000 

163.000000 
225.000000 

42. 000000 
72.000000 

.000000 
9'3580. 00(1000 

30.000000 
-'3. 000000 

203.000000 
--30. 000000 

.000000 
93.000000 

:1.86.000000 
'3'3827. 000000 

.000000 

.000000 

.000000 

.000000 

.000000 

.000000 

DUAL PRICES 
90.000000 
43.000000 



5) .000000 
E.) .000000 
7) .000000 
8) .000000 
9) .000000 

10) . 000000 
11) .000000 
12) .000000 
:1.3) .000000 
14) . 000000 
15) .000000 
16) .000000 
17) 2.000000 
18) 3. 000000 
19) 4.000000 
20) B.000000 
:;:: 1) 5.000000 
2:;~) 1.000000 
~":::3) 2.000000 
24) 3. (l(l(l(l(l(l 
25) .000000 
26) 10.000000 
27) 11..000000 
28) .000000 
2'3) 8.000000 
30) 12.000000 
31) '3. 000000 
32) 10.000000 
33) 5.000000 
34) .000000 
35) 11..000000 
36) 1.000000 
37:> '3. 000000 
38) 4.000000 
3'3) 5.000000 
40) 1 o. 000000 
41) 4.000000 
42) 5.000000 
43) . 000000 
44) 1 . 000000 
45) 2.000000 

NO. I TEPAT IONS:= 105 
BF.:ANCHES= ~ . 

DETEF~:M. == 1. OOOE ..:.. 
BOUND ON OPTIMUM: 1129.714 
FL.IP X62 TO <= (l AT 
SET X47 TO >= 1 AT r:; 

..., f 

SET X63 TO <== 0 AT 4 . , 
SET x:~6 TO <=': 0 AT 5, 
DELETE X26 AT LEVEL 6 
DELETE X36 AT LEVEL ~j 

DELETE X63 AT LEVEL. 4 
FL.IP X47 TO (:.": 0 AT 
SET X74 TO >= l AT 4, 
SET XE.3 TO ·< :;:: (l AT C" ..J, 
!::>ET X36 TO <= 0 AT 6 f 

DELETE X26 AT LEVEL 7 
DELETE X3E. AT LEVEL E. 
DELETE X63 AT LEVEL ej 
FLIP X74 TO <= 0 AT 
SET X46 TO <== 0 AT 5, 
SET Xf.A TO .···- l. AT 6, 
SET X43 TO ·· .. - (l AT 7, 
SET X42 TO <= 0 AT 8, 
SET X35 TO <= 0 AT '3, 

91.000000 
10:2.000000 
-·72. 000000 

47.000000 
-l.BG.000000 

-51. 000000 
-·34 l. 000000 
-1B5.000000 
-174.000000 
·<34H. 000000 
--220. 000000 

0 

.000000 

.000000 

.000000 

.000000 

.000000 

.000000 

.000000 

.000000 

. 000000 

.000000 

.000000 

.000000 

.000000 

.000000 
• (H)(H)(l(l 

.000000 

.000000 

. 000000 

.000000 

.000000 

.000000 

.000000 

.000000 

.000000 

.000000 

.000000 

. 000000 

.000000 

.000000 

.000000 

2 WITH BND= 
BND= -1134. 
BND= -· 1136. 
BND= -1136. 

':> ,., WITH BND:::: 
BND== -·1134. 
BND=: --1136. 
BND::::: -1136. 

4 WITH BND=: 
BND= ··· 1165. 
BND= -1214. 
BND= -1218. 
BND= -1223. 
BND= -122'3. 

-·112'3. 7140 
TWIN= -·1130. 
TL-JIN= -1345. 
TWIN= -.1000E+31 

-112'3. 7140 
TWIN= -11.50. 
TWIN= -· 1345. 
TWIN= ·- . l. OOOE+31 

··· 1150. 1430 
TWIN= --1184. 
TWIN::; -11'32. 
TWIN= ·-1377. 
TWIN= -1.3'30. 
TWIN= -1344. 

140 
165 
131 

254 
:284 
315 

40'3 
450 
476 
487 
507 



X17 .000000 130.000000 
X2l .000000 255.000000 
x:22 .000000 100000.000000 
X23 1.000000 l.07.000000 
X24 .000000 160.000000 
X25 .000000 l3l.OOOOOO 
X26 .000000 348.000000 
X27 .000000 207.000000 
X31 .000000 335. 000000 
X32 .000000 107.000000 
xr:>~.:i 

~.,....., • (l(J(H)(l(l 100000.000000 
X34 • (>0(l0(H) 250.000000 
X35 .000000 230.000000 
X36 .000000 455.000000 
x 1.000000 2EA. 000000 
X41 .000000 95.000000 
X4:2 . 000000 160.000000 
X43 .000000 250.000000 
X44 .000000 100000.000000 
X45 1.000000 83.000000 
X46 .000000 32'3. 000000 
X47 .000000 l38.000000 
X51 .000000 175.000000 
xc-·-· ~£.. • 000000 131.000000 
X53 .000000 23'3. 000000 
X54 . 000000 83.000000 
X55 . 000000 100000.000000 
X56 1.000000 246.000000 
X57 .000000 220.000000 
X61 .000000 421.000000 
XG2 1.000000 348.000000 
X63 .000000 455.000000 
X64 .000000 32'3. 000000 
X65 .000000 246.000000 
X66 • 000000 100000.000000 
X67 .000000 220.000000 
X71 1.000000 130.000000 
X72 . 00000<) 207.000000 
X73 • 000000 264. (H)OOOO 
X74 .000000 138.000000 
X75 .000000 :220. (l(l(l(H)O 
X75 . 000000 487.000000 
X77 .000000 100000.000000 

U2 3. 000000 .000000 
U3 4.000000 .000000 
U4 • 000000 .000000 
ll5 1.000000 .000000 
U6 2.000000 .000000 
U7 5.000000 .000000 

r:mw SLACK or.~ SUF'ff'LUS DUAL PF.'. ICES 
::::~) • (l(l(H)00 .000000 
3) .000000 .000000 
4) .000000 .000000 
~)) . 000000 .000000 
6) .000000 .000000 
7) . 000000 .000000 
8) .000000 .000000 
~n .000000 .000000 

10) • 000000 .000000 
11) .000000 . 000000 
12) .000000 .000000 
13) .000000 .000000 
14) • 000000 .nnnnon 



16) .000000 .000000 
17) 3.000000 .000000 
18) 4.000000 .000000 
19) 5.000000 .000000 
20) 8.000000 .000000 
21) 5.000000 .000000 
22) 2.000000 .000000 
23) 3.000000 .000000 
24) 4.000000 .000000 
25) .000000 .000000 
26) 9. 000000 .000000 
27) 10.000000 .000000 
28) .000000 .000000 
29) 8. 000000 .000000 
30) 1 1 .000000 .000000 
31) 8.000000 .000000 
32) 9.000000 .000000 
33) 5.000000 .000000 
34) .000000 .000000 
35) 10.000000 .000000 
36) .000000 .000000 
37) 8.000000 .000000 
38) 4.000000 .000000 
39) 5.000000 .000000 
40) 9.000000 .000000 
41) 4.000000 .000000 
42) 5.000000 .000000 
43) 1.000000 .000000 
44) 2.000000 .000000 
45) 3.000000 .000000 

NO. ITERATIONS= 1153 
BRANCHES= 32 DETERM.= -1.000E 0 



"" 
~IN TS - Ti 
ST 
T2 - T1 )~ 95 
T3 - T1 > 160 
J4 - T1 > 250 
J5 -- T1 > 83 
T6 - Tt ) 329 
~r7 - T1 > 138 
T3 -· T2 > 255 
T4 - T2 ··~. 

·' 250 
T4 - T3 > 250 
T5 - T2 > 83 
T5 - T3 > 83 
T5 - T4 > 83 
T6 - T2 > 329 
T6 - T3 > 32'3 
TG - T4 > 329 
T6 - TS ,, 

·' 329 
T7 - T2 > 138 
T7 - T3 > 138 
T7 - T4 > 138 
T7 - TS } 138 
T7 - T6 > 138 
TB - T2 > •35 
TB - T3 > 160 
TB - T4 > 250 
TB - TS ) 83 
TB - T6 > 32'3 
TB - T7 > 138 
17 > 140 
f 7 ,. 

'· 160 

!OR TCTSP FORMULATION FOR LINDO 
! OBJECTIVE FUNCTION 

THESE CONSTRAINTS MUST BE ABSOLUTE VALUES 

TIME WINDOW FOR YACHATS <LOWER LIMIT) 
TIME WINDOW FOR YACHATS (UPPER LIMIT) 


