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Abstract:  This paper looks at the problem of efficient transport operations
for Emery Worldwide, a subsidiary of Consolidated Freightways, Inc.

Emery isamgor internationa carrier of "hard" air freight, which isthe air
freight other than envelopes and small packages. The paper focuses on
Emery's North American operations, which congtitute the mgjority of
Emery's air freight business.
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THE TRANSPORT OPERATIONS PROBLEM

Introduction

Transport operations are critical to the success of an air
freight company. Air freight revenues are dependent on the
company'’s ability to provide quick transit among a large number
of demand points. Transport costs make up a large portion of
total expenses.

In most cases, volumes between pairs of demand points are not
large enough to support a dedicated vehicle between the points.
Efficient transport operations therefore depend on identifying a
set of routes and a set of assignments of vehicles to routes
which will provide both quick transit and low transport cost.

This paper looks at the problem of efficient transport operations
for Emery Worldwide, a subsidiary of Consolidated Freightways,
Inc. Emery is a major international carrier of "hard" air
freight, which is air freight other than envelopes and small
packages. The paper focuses on Emery’s North American
operations, which constitute the majority of Emery’s air freight
business.

The paper examines techniques for determining the best
operational policies for Emery’s transport operations.
'Operational policies’ means decisions about such questions as:

What demand points should be served

What level of service should be provided to each point
What hub and terminal facilities should be maintained
What routes should be traveled

What vehicles should be used

P I M I M

The focus of the paper is on the applicability of a set of
operations research techniques known as 'mathematical
programming’. These techniques are discussed in terms of how
well they are suited to Emery’s specific planning needs. The
paper does not survey all of the research which might be
applicable to Emery’s situation, but does attempt to give a
picture of what techniques are available.

A quantitative example is included which illustrates how this
class of technique could be applied to Emery’s planning problem.
The values used in the example are loosely based on real
operating values, and are intended to form a realistic scenario.
The values are not, however, actual operating values.
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THE TRANSPORT OPERATIONS PROBLEM
Introduction

The paper contains the following five sections:

The Transport Operations Problem describes Emery’s planning
problem and serves as a background for the remainder of the
discussion.

Related Literature is a brief discussion of some approaches
to similar problems which have been reported in the recent
operations research literature,.

A Simple Model describes a mathematical programming model
that deals with a limited part of the Emery planning
problem. It presents the formulation and solution of a
small example problem.

Extensions to the Simple Model discusses the feasibility of
making extensions to the simple model. The extensions which
are discussed include increasing the size of the problem and
extending the model to consider additional characteristics
of the real-world problem.

Alternative Approaches discusses the feasibility of using
other types of models in place of, or as an adjunct to,
mathematical programming models.

Conclusions presents a summarization and discussion of the
other sections.

RH 11/29/91 2



THE TRANSPORT OPERATIONS PROBLEM
The Transport Operations Problem

Emery Worldwide is a major international air freight carrier.
Emery’s North American operations, which are the subject of this
paper, include:

* Ninety terminal locations

¥ Thirty regularly-scheduled aircraft routes

* Fifty regularly-scheduled truck routes

¥ About 25,000 shipments daily
Emery uses a hub-and-spoke network which includes a major North
American hub plus several smaller North American hubs. Aircraft

and trucks typically travel into the hub and back out again five
nights a week. '

\. '
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A Hub-and-Spoke Network
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THE TRANSPORT OPERATIONS PROBLEM
The Transport Operations Problem

OBJECTIVE: Maximize the Contribution of Transport Operations

Contribution = Revenue - Costs

Transport operations affect costs in a straightforward way.

Total transport costs are the sum of the component costs.
Transport operations also affect revenue. The air freight
business depends on the willingness of customers to pay a premium
price for quick delivery. Transport operations policy must be
based on the combined effects on revenues and costs.

Revenue

Emery does busines at the high end of the "hard" freight
market. Emery provides a premium service at a premium price
for that freight which justifies the price. The services
which it offers include:

»

Same Day (SD)

* Next Morning (AM)

¥ Next Day (PM)

¥ Second Day (2D)
The revenue per unit shipped is of course higher at higher
service levels.
Some level of revenue is potentially available at each
service level between any two points. Emery can obtain the
potential revenue if it can provide the required level of
service between the points.
Service that qualifies at any level also qualifies at all
lower levels. If Emery operates a route between two points

which meets the ’AM’ service level, that same route also
meets the 'PM’ and '2D’ service levels,

RH 11/29/91 4
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Revenue Available Between
Two Points Depends on
Sarvice Lewval

Revenue
Available

(§)

b A Pl <D

Service Level Provided

The revenue available between two points is directional.
That is, the revenue available from A to B is not generally
the same as the revenue available from B to A.
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THE TRANSPORT OPERATIONS PROBLEM
The Transport Operations Problem

Costs

Transport costs are incurred in order to earn revenues.
Transport costs and service levels (transit times) are
affected by the route used and by the type of vehicle used
(especially ground vs. air).

Traffic Routing

Shipments can travel between two points either directly or
through any series of points. The total revenue which is
available from the network is dependent on transit times and
on the capacity between points,

Transshipment

RH

Shipments which travel through intermediate points must be
transshipped. Transshipping requires several steps at the
transship point:

X Vehicle reaches the dock

¥ Cargo is unloaded

X Cargo is sorted

¥ Cargo is reloaded

¥ Vehicle leaves the dock
Each of these steps has a time and a cost. 1In addition,
each of the steps requires facilities. Each point has a
limited capacity for craft arrivals/departures per time
period. Each point also has a cargo transshipment capacity
per time period. In addition, any point that is used as a

transship point has a shift cost plus a cost per unit of
cargo transshipped.

11/29/91 6



THE TRANSPORT OPERATIONS PROBLEM
The Transport Operations Problem

Transit Times

The transit time for any shipment is the sum of all its
point-to-point times plus any time at transship points.
Time at transship points can include delays due to
contention for facilities and waits for connecting vehicles.
In general, a vehicle departing from a transship point will
not leave until after the last arriving vehicle has arrived
and its cargo has been offloaded and sorted.

\J

B

C D
A ->D and B ->D are transshipped through C
_Night A-C  Llransship = delay
- flight C-1 '
‘ flight B-C . {ranaship
fime -—----—- >
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THE TRANSPORT OPERATIONS PROBLEM
The Transport Operations Problem

Tranport Cost

Transport cost depends on the type of vehicle (especially
aircraft versus truck) and on contractual or financial
arrangements.

In general, dedicated and contract transport have a fixed
‘cost per unit time (dollars per day). In addition, they
have a cost per unit of freight (weight and/or volume) and a
cost per distance or time travelled.

Spot transport between two points has a cost per unit of
freight (weight or volume).

Competitive Environment

RH

The air freight business is highly concentrated, for a
number of reasons. These include the rather large fixed
costs of maintaining a minimal set of facilities and
organization, the less-than-load demands that are available
at most demand points, and the large fixed cost of aircraft.

Because of the concentration in this market, any decision to
take or relinquish market affects a small number of
competitors. Attempts to take market may be resisted in the
form of price competition. Relinquishing market may
strengthen competitors in ways that are strategically
significant.

Major national air freight customers may be affected by a
decision to discontinue or degrade service to some points.
This may affect Emery’s ability to keep a customer’s

business for those points which Emery continues to serve.
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THE TRANSPORT OPERATIONS PROBLEM

Related Literature

The preceding section suggests the many factors that should be
considered in developing a transport operations policy for Emery
Worldwide. There is no single integrated model which is capable
of prescribing the best operating policy for Emery, considering
all of the factors which were described in the preceding section.
All practical approaches deal with portions of the problenm.

Emery’s planning problem has many similarities with a large
number of other planning problems. This class of problems has
been the subject of much research.

One way to simplify the approach is to take a high-level or
"strategic" approach to the problem. Hall (1989) takes this
approach in hisgs study "Configuration of an Overnight Package Air
Network". The first section of Hall'’'s paper looks at the
prlacement for a central North American hub facility. He
considers the interactions between hub placement, time zones and
travel distances and arrives at a formulation which expresses the
effect of hub placement on the minimum time window available for
overnight shipments. In the second section of his paper, Hall
looks at how hub placement affects the time pattern of arriving
flights and the sortation capacity which must be available to
support the arriving shipments within the time window. In the
third section of his paper, he looks at routing strategies which
use more than one hub. He examines how different configurations
affect the ability to meet time constraints and how they affect
the number of routes which must be flown.

By focussing on major questions, Hall'’s approach provides
guidance on major or “"strategic" aspects of the transportation
operations policy. It does this without requiring a complex
mathematical problem formulation and an elaborate mathematical
programming technique to determine a solution. This approach
does give guidance on major questions such as how many hubs
should be operated, where they should be placed, and what
sortation capacity may be needed. It does not, however, answer
more detailed questions such as which specfic routes should

exist, what vehicles should be used, and what demand should be
served.
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THE TRANSPORT OPERATIONS PROBLEM
Related Literature

Leung, Magnanti and Singhal (1990) present a more-specific model
in their article "Routing in Point-to-Point Delivery Systems:
Formulations and Solution Heuristics". Leung et al. consider a
problem with the following characeristics:

¥ Point-to-point demand is fixed and known.

¥ A transportation network exists which consists of terminals
and distribution centers. ("Distribution centers" are
comparable to "hubs".)

¥ Transport between points in the network is done with a
homogeneous fleet of trailers. There is a fixed cost for
dispatching a trailer across a given link of the network,
independent of volume.

¥ Each distribution center (hub) has a characteristic
processing cost function. The cost function is stepwise
linear and gives increasing costs per unit when the quantity
of goods shipped through the distribution center exceeds a
nominal ’capacity’.

¥ All freight between a given pair of points must follow the
same route through the network.

This problem formulation does not require that the flow of
trailers into a point must equal the flow out of a point.

Their procedure solves this problem to minimize the sum of
trailer costs and distribution center processing costs. It
results in a set of assignments of terminals to distribution
centers and a set of routes among the distribution centers.

This problem is a mixed-integer program with nonlinear
constraints. The authors present a solution procedure which is
specific to this problem formulation. The solution procedure is
not an optimizing procedure but is rather a heuristic procedure
which finds a "good" solution with no guarantee that it will find
the best solution possible. The procedure relies on breaking the
problem into two related sub-problems. The solution of one sub-
problem feeds the other. Then the solution of the second sub-
problem becomes input to the first, and so on until no further
improvement can be made.

RH 11/29/91 11



THE TRANSPORT OPERATIONS PROBLEM
Related Literature

One of the two sub-problems consists of determining which
distribution center should be assigned to each terminal. The
answer to this depends on the minimum-cost routing from each
distribution center to the other distribution centers.

The other sub-problem consists of determining the minimum-cost
routing from each distribution center to the other distribution
centers. The answer to this depends on the assignment of
terminals to distribution centers.

The solution procedure starts with a reascnable set of
assignments of terminals to distribution centers and a reasonable
set of routes between distribution centers. It then iterates
back and forth between the two sub-problems. In this way the
original reasonable solution is improved. This procedure does
not guarantee that the best possible solution will be found. 1In
fact, the final answer depends on the original reasonable
solution.

Solomon and Desrosiers (1988) present a survey of problem
formulations and solution procedures to a related set of problems
in their paper "Time Window Constrained Routing and Scheduling

Problems". This class of problems is similar to the Emery
problem in that it considers routing of vehicles within time
windows. It differs from Emery’s problem in the important

respect that it considers the problem to be cost minimization
given a fixed demand, whereas the Emery problem includes the
choice of what points to serve and which service levels to carry.
The survey results do point out that problems of practical size
and complexity must be handled with special heuristic procedures
rather than with off-the-shelf optimizing programs.

RH 11/29/91 12



THE TRANSPORT OPERATIONS PROBLEM

A Simple Model

This section of the paper presents a rather simple mathematical
programming model which is specifically designed to deal with
Emery’s planning needs. In an earlier section I summarized
Emery’'s "planning problem". That problem is very complex. The
model which will be presented in this section deals with a subset
of the problem.

The sub-problem deals with considerations which are relevant on a
medium-range planning horizon, say one to two years. In the
medium-range problem, ground facilities can be considered as
fixed, while the choice of markets to serve, the fleet of
vehicles to be used, and the vehicle routes to be traveled can be
considered as decision variables.

The model is based on the following assumptions:

¥ There is a known amount of cargo available between any two
points. The cargo is available to Emery if it can be
delivered quickly enough. The available cargo falls into
multiple service tiers, and the cargo with stricter service
requirements carries a higher revenue per unit. Emery can
choose to carry any amount of the available cargo, from none
to all.

¥ The possible vehicle routes between points can be
specified. The cost for each vehicle route includes a fixed
cost (per movement) plus a cost per unit of cargo carried on
the vehicle.

¥ The feasible cargo routes (from demand point to demand
point) can be specified in terms of the vehicle movements.
For example, suppose there is a vehicle route between A and
B, and another vehicle route between B and C. The
assumption is that it can be specified whether the combined
route A-B-C can meet the service time requirements at the
different service tiers,

* Transshipment costs and capacities can be ignored, or can be
considered indirectly through the specification of feasible
cargo routes.

The remainder of this section presents the mathematical
formulation of the model, briefly discusses the solution
procedure, and then discusses the types of information which the
solution provides. A sample problem is presented to give a
concrete illustration. The sample problem uses parameters which

RH 11/29/91 | 13



THE TRANSPORT OPERATIONS PROBLEM
A Simple Model

are intended to provide a realistic scenario, but are not based
on actual values. A complete statement of the sample problem
formulation and solution are included in the appendix.

- Mathematical Formulation of the Model

Five different types of mathematical relationships make up this
model. These are:

1. Cargo availability between points
2. Cargo routing options

3. Route capacity limits

4. Vehicle used to serve each route
5, Contribution (revenue minus costs)

l. Cargo Availability Between Points

In this model, the cargo available between any two points is
fixed and known, and there are different amounts available at

different service levels. This can be expressed in a table like
. the one which follows. In the table, the demand points are A, B,

D and E, and there are two levels of service, AM and PM.

Cargo Availability and Rates

AM Weight AM PM Weight PM
Org Dst Available Rev./lb. Available Rev./lb.
A B 3388 $1.10 5288 $0.80
A D 4525 1.84 6654 1.34
A E 2378 2.39 4391 1.74
B A 3336 1.10 53417 .80
B D 5941 2.56 10521 1.86
B E 4493 3.16 6674 2.30
D A 4465 1.84 6763 1.34
D B 6415 2.56 10302 1.86
D E 59186 .60 8832 44
E A 3153 2.39 3905 1.74
E B 4294 3.16 6723 30
E D 3149 60 5101 44

RH 11/29/91
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THE TRANSPORT OPERATIONS PROBLEM
A Simple Model

In the model, cargo availability is handled by a set of
inequalities. For example, the statement

WABAM <= 3388

says that the AM weight shipped from A to B must be less than or
equal to 3,388 pounds. The ’'Weight Available’ columns in the
preceding table generate 24 such equations. '

2. Cargo routing options

The sample problem is based on a transportation network which
includes the four demand points A, B, C, D and a hub H which has
no demand. The diagram below shows these five points and the
distances between them.

28 225
\ /275

T s

B Hub

Demnand Points and Hub location
(Nunbers indicate distance)
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THE TRANSPORT OPERATIONS PROBLEM
A Simple Model

While routes between any set of points are feasible, the sample
problem considers just seven routes, as shown on the next

diagram.

E
A Route 3B L
Route 7 /
= Route §

]

Route 6 Route 34 D

Route 1

\ Route 4

Route 2
Hub

Candidate Routes

In the figure above, Route 1 is a closed loop route from point A

to the hub and back to point A. Routes 3A and 3B represent a

single closed loop that travels from point E to point D, point D

to the hub, hub to point D, and point D back to point E.

Although all the routes considered in the sample problem are
" closed loops, the model allows one-way routes.

RH 11/729/91



THE TRANSPORT OPERATIONS PROBLEM
A Simple Model

Consider cargo moving from point A to point E. Suppose that A-E
cargo will be delivered on time if it travels from A to D to E or
if it travels from A to H to D to E, but that it won't be
delivered on time if it travels from A to B to H to D to E. Then
the feasible routings for A-E cargo are as follows:

Routings from A to D to E:

Route 7, then Route 3B
Route 7, then Route 5

Routings from A to H to D to E:

Route 1, then Route 3A, then Route 3B
Route 1, then Route 3A, then Route 5
Route 1, then Route 4, then Route 3B
Route 1, then Route 4, then Route 5

The routing options for A-E cargo are shown in the diagram which
follows:

E
A Route 3B a
Route 7 /
| Route §
-
Route 34 D
Route 1
~\\\\ Route 4
. ®
B Hub

Feasible Routes for A-E Traffic

RH 11/29/91 17



THE TRANSPORT OPERATIONS PROBLEM
A Simple Model

The routing options for AM traffic from point A to point E are
specified in the sample problem as follows:

1) WAEAM = SAEAMR1 + SAEAMRT
2) SAEAMR1 = SAEAMR3A + SAEAMR4
3) SAEAMR7 + SAEAMR3A + SAEAMR4 = SAEAMR3B + SAEAMRS

Equation 1) states that the AM weight shipped from point A to
point E is the sum of the AM weight from point A to point E
shipped via Route 1 and the weight shipped via Route 7.

Equation 2) states that the AM weight shipped from A to E via
Route 1 equals the sum of the weight shipped via Route 3A and the
weight shipped via Route 4. This equation simply states that all
of this type of shipment which is shipped into the hub (via Route
1) must also be shipped out of the hub.

Equation 3) is similar to equation 2), except that it deals with
AM shipments from point A to point E shipped into and out of
point D.

A set of equations like these three is needed to define the

feasible routes for each point pair and each service level.

3. Route capacity limits

In this model, a route is considered to be a vehicle travelling
between a set of points. A route therefore has a capacity and a
cost. The candidate routes which were considered in the sample
problem are listed in the table on the next page. In the sample
problem, the cost/pound in one direction on a route is set the
same as the cost/pound in the other direction. The model will,
however, allow different costs in different directions.

RH 11/29/91 18
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THE TRANSPORT OPERATIONS PROBLEM
A Simple Model

Candidate Routes

Vehicle Type: Al

Capacity: 78000
Leg: A-H Miles:
Leg: H-A Miles:

Vehicle Type: A2

Capacity: 62000

Leg: B-H Miles:

Leg: H-B Miles:
E-D~H-D-E Vehicle Type: A2
Capacity: 62000

E-D Miles:

D-H Miles:

H-D Miles:

D-E Miles:

D-H-D

E-D-E

A-B-A

A-D-A

RH 11/29/91

Leg:

Vehicle Type: A2

Capacity: 62000
Leg: D-H Miles:
Leg: H-D Miles:

Vehicle Type: TI1

Capacity: 45000
Leg: D-E Miles:
Leg: E-D Miles:

Vehicle Type: A2

Capacity: 62000
Leg: A-B Miles:
Leg: B-A Miles:

Vehicle Type: A2

Capacity: 62000
Leg: A-D Miles:
Leg: D-A Miles:

Route
Fixed

450
450

Route
Fixed

430
430

Route
Fixed

220
550
550
220

Route
Fixed

550
550

Route
Fixed

220
220

Route
Fixed

400
400

Route
Fixed

670
670

Distance:
Cost: 19,

Cost/pound:
Cost/pound:

Distance:
Cost: 15,

Cost/pound:
Cost/pound:

Distance:
Cost: 22,

Cost/pound:
Cost/pound:
Cost/pound:
Cost/pound:

Distance:
Cost: 18,

Cost/pound:
Cost/pound:

Distance:
Cost: 6,

Cost/pound:
Cost/pound:

Distance:
Cost: 15,

Cost/pound:
Cost/pound:

Distance:
Cost: 20,

Cost/pound:
Cost/pound:

900
000.00
.23
l23
860
600.00
.30
.30
1540
400.00
.15
.39
.39
.15
1100
000.00
.39
.39
440
600.00
.05
.05
800
000.00
.28
.28
1340
400.00
.47
47
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THE TRANSPORT OPERATIONS PROBLEM
A Simple Model

Although the sample problem generally considers only one vehicle
route between a given set of points, the model has the capability
to consider alternative vehicles. It does this by defining
additional routes which share the same demand points but which
have different capacities and costs.

The capacity constraint for a route is modeled with an equation
such as the following:

SABAMR1 + SABPMRI1 +
SADAMR1 + SADPMR1 +
SAEAMR1 + SAEPMR1 <= 78000

This equation says that the total weight on the A to H leg of

Route 1 can not be greater than 78,000 pounds. A similar
equation is needed for each leg of each route.

4. Vehicle used to serve each route

If any weight is carried on any leg of a route, the fixed cost
for the vehicle which serves that route is incurred. A set of
equations is needed to indicate which of the available routes are
used:

SABAMR1 + SABPMR1 +

SADAMR1 + SADPMR1 +

SAEAMR1 + SAEPMR1 +

SBAAMR1 + SBAPMR1 +

SDAAMR1 + SDAPMR1 +

SEAAMR1 + SEAPMR1 -~ 156000 USEl <= 0O
In this equation, USEl is a variable which can either have the
value 0 or the value 1, If any of the S... variables is greater
than 0, this equation forces USEl to have the value 1. The value

'156000' is the total weight which can be carried on both legs of
Route 1. There is one such equation for each defined route.

RH 11/29/91 20
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A Simple Model

5. Contribution (revenue minus costs)

The four types of equations which are discussed above define
which combinations of demand, routes and vehicles are feasible.
The final equation needed is one which defines which of the
combinations are more desirable. This final equation (or
objective function) calculates the contribution (revenue minus
costs) of the combination. The objective function for this model
takes the following form:

Contribution = Revenue -~ Route fixed costs - Costs/pound

Revenue is equal to weight shipped times dollars per pound. For
the sample problem, this is:

1.10%*WABAM + 0.80%WABPM +
1.84%¥WADAM + 1.34%WADPM +

The numbers (1.10, 0.80, etc.) are taken from the chart above,
"Cargo Availability and Rates".

Route fixed costs are the fixed vehicle costs which are incurred
if a route is used. For the sample problem, the expression for
route fixed costs is:

19000%USE1 +
15600%xUSE2 +

The numbers (19000, 15600, etc.) are taken from the chart above,
"Candidate Routes".

Costs/pound are the additional shipping costs which depend on the
vehicle used and the amount of weight shipped. For the sample
problem, the expression for costs/pound is:

0.23*%SABAMR1 + 0.23%¥SABPMR1 +
0.23%SADAMR1 + 0.23%SADAMR1 +

The numbers (0.23, etc.) are taken from the chart above,
"Candidate Routes".

RH 11/29/91 21



THE TRANSPORT OPERATIONS PROBLEM
A Simple Model

The total objective function, then, looks like the following:

1.10%¥WABAM + 0.80%WABPM +
1.84%xWADAM + 1.34%WADPM +

Contribution

~ 19000%USE1
-~ 15600%USE2
- 0.23%*SABAMR1 - 0.23%SABPMR1
0.23*%SADAMRI1 0.23*SADAMR1

The complete formulation of the sample problem appears in the
Appendix, beginning with page 33.

Solution Procedure

This model is a mixed-integer programming model. The 'USE’
variables are (0,1) integer variables. The problem can be solved
with standard off-the-shelf mixed-integer-programming software.

The sample problem, which contains 100 constraints, was solved
beginning with the LP relaxation after 25 branches and 599
pivots.

Solution Results

Because the model is a mixed-integer programming problem, the
solution results are optimum, given the assumptions of the model
and the accuracy of the model'’s parameters. The results which
are provided in the model solution include:

Which routes should be operated

Which routes should be used for each type of shipment
Surplus capacity of each vehicle

The contribution which would result from additional cargo
for each of the demand point pairsg, given the routes that
are selected in the optimal solution

¥ I I
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THE TRANSPORT OPERATIONS PROBLEM
A Simple Model

For the sample problem, the results are:
¥ Routes which should be operated:

Route

Route

Route
Route

=N

¥ Routes which should be used for each type of shipment:

Demand Pair Service Routing
A-B AM None
A-B PM None
A-D AM R7
A-D PM R7
A-E AM R5-R7
A-E PM R5-R7
B-A AM None
B-A PM None
B-D AM R2-R4
B-D PM R2-R4
B-E AM R2-R4-R5
B-E PM R2-R4-R5
D-A AM R7
D-A PM R7
D-B AM R4-R2
D-B PM R4-R2
D-E AM R5
D-E PM R5
E-A AM ‘ R7-R5
E-A PM R7-R5
E-B AM R5-R4-R2
E-B PM R5-R4-R2
E-D AM R5
E-D PM R5

¥ Surplus Capacity of Each Vehicle:

34,371

Route 2, B-H

Route 2, H-B 34,266
Route 4, D-H 34,266
Route 4, H-D 34,371
Route 5, D-E 12,316
Route 5, E-D 25,733
Route 7, A-D 44,052
Route 7, D-A 43,714

RH 11/29/91
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¥ Contribution from Additional Cargo (dollars/pound), given

the selected routes:

A-B
A-B

)

L R L
UowowwrrHHWrrHEHOO0RHEBO0

i
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AM
PM
AM
PM
AM
PM
AM
PM
AM
PM
AM
PM
AM
PM
AM
PM
AM
PM
AM
PM
AM
PM
AM
PM

None
None
1.37

.87
1.87
1.22
None
None
1.87
1.17
2.42
1.566
1.84
1.34
1.87
1.17

.55

.39
1.92
1.27
2.42
1.56

.55

.39
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Extensions to the Simple Model

The model which was presented in the preceding section is
targeted to address medium-range planning issues, such as which
routes to operate and what vehicles to use. The model provides
an optimal operating policy given the assumptions which are built
into the model and given the accuracy of the parameters used to
build the model. Two short-comings of this model are its failure
to handle transshipment requirements explicitly and its size.

Transshipment Extensions

Tansshipments are significant in this problem in a couple of
ways. First, transshipment capacity can be a constraint on the
amount of cargo which can pass through a point. Second,
transshipment has a cost. The transshipment cost includes a
facility cost. This cost may be considered as sunk for the
medium-range view taken in this model. The transshipment cost
also includes a shift cost, which depends on whether a point is
used as a transship point, and a cost per unit of cargo
transshipped, which depends on how much cargo is transshipped
there.

The model which was presented in the previous section can deal
with transshipment capacity constraints in a partial way through
the model formulation process. Routes which would require
transshipment at a point that can not provide it should not be
defined as feasible routes. The model does not, however, deal
with variable transshipment costs.

The model could be extended to deal with variable transshipment
cost and with transshipment capacity constraints in an explicit
way. Equations would be added to the model which would identify
which points are used as transship points and which cargo is
being transshipped. This would allow transshipment capacity
constraints to be applied, and would also allow variable
transship costs to be considered in calculating the contribution.

Referring back to the sample problem, if any A-E cargo were
shipped through point D, this would make point D a transship
point, and a transship shift cost would be incurred as a result.
The total weight transshipped at point D would determine the
transship processing costs at point D. An equation would be
defined for each potential transship point which would indicate
whether the point was indeed used for transshipment. These
equations would look like the route use equations which were
explained in the preceding section.
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Model Size

The sample problem considered only four demand points, two
service levels, and seven routes. The model formulated from the
sample problem included one hundred constraint equations. (This
is the capacity of the "student version" software which was used
to solve the sample problem.) In general, the number of

equations for this model is approximately equal to:

3 % Number of point pairs * Number of service levels
+ Number of route legs
+ Number of routes

If the model were expanded to include transshipment equations,
the number would be higher. The number of variables in the model
is somewhat higher than the number of equations.

Since the number of point pairs doubles whenever a point is
added, the nominal size of the problem grows by a factor of four
whenever a point is added. If the model were expanded to include
ninety demand points and four service levels, this would result
in about 100,000 equations, not including transshipment
equations.

The size of the model causes two potential problems. The first
of these is the expense of formulating the model equations. The
sample problem was formulated by hand. The formulation was time-
consuming and error-prone. Formulating a large-scale model would
require software to automate the formulation process. The
software would transform a standard normalized database into the
set of equations that are required by the solution software.

This is illustrated below.

Cargo Availability -----—--- !
and Rates :
H
Candidate Routes --—-—=-——--- H Model Model
1-=-=-> Formulation ---> Equations
Feasible Shipping ---~---—-- : Software
Routes i
1
]
Transshipment -------————-- :

Capacities and Costs
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The second problem associated with large model size is the
feasibility of solving the model. Large models require large
amounts of storage and CPU time. 1In general, the CPU time
required for solution grows more rapidly than the storage
requirements. The large model contemplated above (890 demand
points and 4 service levels) would nominally require a matrix of
9-10 billion elements. The matrix is very sparse, however, and
sparse-array techniques could probably be used to reduce storage
requirements to feasible levels. However, CPU time requirements
would still be large, and probably large enough to severely limit
the amount that such a model could be used.

One approach to reducing the CPU time requirements of a large
model is to start the solution process with a known good
solution. In this case, the known good solution would be Emery’s
current operating policies. The solution procedure can quickly
eliminate many of the options which are not as good as the best
known solution.

Another approach to reducing the CPU time requirements would also
reduce storage requirements. This approach is based on a
characteristic of the transportation operations problem and uses
the technique of splitting the problem into multiple subproblems.

Consider the following diagram:

Vest : East

| ]
seconsasmnen
a

Hub-Dominated Network
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The diagram shows a centrally-located hub and a set of demand
points. In the diagram, the demand points are partitioned into
two groups, one to the east and the other to the west of the hub.
This is, of course, an exaggeration of the true situation, but it
illustrates a point. Suppose that east-west traffic travels
through the hub. Then, if we consider just the points to the
east of the hub, the transportation problem can be considered as
involving just the hub and points east. Any cargo which actually
originates in the West looks to the eastern points as if it
originated at the hub. This characteristic of the problem
provides a basis for splitting or ’'decomposing’ the problem into
sub-problems.

Although the transportation network does not in fact split into a
number of sub-problems which are strictly separated, it is
possible to separate the problem into sub-problems which have
limited inter-connectedness. This is so because of the same set
of factors which favor the hub-and-spoke network. See Hall
(1989). These factors include the preponderance of less-than-
load demand between point pairs and the need to operate dedicated
craft. Another factor which promotes separability is that the
desirability of providing service to a point is strongly affected
by the volume of demand (incoming and outgoing) at that point and
is much less affected by whether or not any particular other
point is served.

A number of problem decomposition approaches have been reported
in the literature. The paper by Leung, Magnanti and Singhal
{1990) which is described above is one example. In addition,
there are more-generally-applicable decompositions available,
such as the Dantzig-Wolfe and Bender decompositions.
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Alternative Approaches

The bulk of this paper has been concerned with one type of
approach to the Emery planning problem, mathematical programming.
There are numerous variations of the mathematical programming
approach. They all consist of first formulating the problem as a
set of mathematical equations which describe the possible
strategies, then using a solution procedure which either
identifies the best possible strategy or identifies "good"
strategies.

These mathematical programming approaches have some limitations.
Some of the limitations are discussed in the preceding section,
along with some of the strategies which are available for
overcoming them.

A basic limitation of these approaches is that it is necessary to
simplify the problem sometimes drastically to formulate the
problem in a way that can be solved. The simple model which was
discussed in the preceding two sections was large enough that
computer size and time to solve it would be problematic. Yet
that model does not consider terminal pickup-and-delivery
operations, and how those are related to transport operations.
Nor does it consider that cargo availability is not fixed, but
varies from day to day.

An alternative to mathematical programming-based models, which
prescribe a best set of decisions given all the options, is a
predictive/descriptive model. A very simple
predictive/descriptive model would just evaluate what the revenue
and costs would be, given a set of routes and a set of
assignments of vehicles and cargo to them. At this level, the
model would be like the simple mathematical programming model
presented earlier, but with only one option.

This predictive/descriptive type of model has a couple of
potential advantages over mathematical programming models.

First, they are simple to construct, quick to execute, and do not
suffer from the geometric growth patterns of the mathematical
programming models. Second, it is possible to make them as
detailed as needed, again without the geometric growth problems
of the mathematical programming models.

The drawback of the predictive/descriptive models is the strength
of the mathematical programming models. The
predictive/descriptive models do not tell what the best set of
decisions is. In terms of Emery’s problem, however, this may not
be a major drawback. As discussed above, decisions about
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service, vehicles and routing tend to have consequences that are
largely localto the points and routes being considered. In
addition, there are generally only a small number of options that
directly affect a particular point. It may be possible to
develop very good solutions without an optimizing model by making
a systematic search of local options and evaluating the different
strategies with a simple predictive/descriptive model.
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Conclusions

These major points have been raised in the body of this report:

¥ Emery’s transportation operations problem is ’'mission
critical’ and is very complex.

¥ No integrated model exists for solving it.

¥ Practical models reduce the complexity of the problem by
several strategies. These strategies include looking at the
problem at a higher level, simplifying the problem, or
splitting up (decomposing) the problem into sub-problems.

¥ The literature includes much research into closely-related
problems. This research reports on many techniques that
might be applicable to Emery’s problem with some
modification.

¥ Emery’s medium-range planning problem can be formulated into
a fairly simple mixed integer program which can be solved
with off-the-shelf software.

¥ This problem formulation, though simple, becomes a very
large problem if it is extended to cover Emery’s real-world
transportation network. Special techniques, such as
decomposition, may be needed to make the problem managable.

¥ Predictive/descriptive models are an alternative to
mathematical programming models. Although they do not
identify the best solution, they are relatively easy to
develop and quick to execute. It may be possible to use
such models in concert with localized searches to develop
good solutions to the Emery planning problem.
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Appendix - Sample Problem

PROBLEM FORMULATION

MAX

RH

l + + +++ 4+ ++ + + +

1.10
1.84
2.39
1.10
2.56
3.16
1.84
2.56
0.60
2.39
3.16
0.60
1900
1560
2240
1800
660
1500
2040
.23
.23
.23
+23
+23
.23
.30
.30
.30
.30
.30
.30
.39
.39
.39
.39
.39
.39
.39
.39
.15
.15
<15
'15

1172

WABAM
WADAM
WAEAM
WBAAM
WBDAM
WBEAM
WDAAM
WDBAM
WDEAM
WEAAM
WEBAM
WEDAM
USE1l
USEZ2
USE3
USE4
USES5
0 USES6
0 USE7
SABAMR1
SADAMR1
SAEAMR1
SBAAMR1
SDAAMR1
SEAAMR1
SBAAMR2
SBDAMR2
SBEAMRZ2
SABAMRZ2
SDBAMR2

+++ A+ + o+

0
0
0
0
0

SEBAMRZ -~

SDAAMR3A
SDBAMR3A
SEAAMR3A
SEBAMR3A
SADAMR3A
SAEAMR3A
SBDAMR3A
SBEAMR3A
SAEAMR3B
SBEAMR3B
SDEAMR3B
SEBAMR3B
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0
1
1
0
1
2
1
1
0
1
2
0

.80
.34
.74
. 80
.86
.30
.34
.86
.44
.74
.30
44

.23
.23
.23
.23
+23
.23
.30
.30
.30
.30
.30
.30
.39
.39
.39
.39
+39
.39
.39
.39
.15
.15
.15
.15

WABPM
WADPM
WAEPM
WBAPM
WBDPM
WBEPM
WDAPM
WDBPM
WDEPM
WEAPM
WEBPM
WEDPM

SABPMR1
SADPMR1
SAEPMR1
SBAPMR1
SDAPMR1
SEAPMR1
SBAPMR2
SBDPMR2
SBEPMR2
SABPMR2
SDBPMR2
SEBPMRZ2

' revenue

! route fixed costs

! route costs/pound

SDAPMR3A
SDBPMR3A
SEAAMR3A
SEBPMR3A
SADPMR3A
SAEPMR3A
SBDPMR3A
SBEPMR3A
SAEPMR3B
SBEPMR3B
SDEPMR3B
SEBPMR3B



- .15
- .39
-~ .39
- .39
- .39
- .39
- .39
- .39
- .39
- .05
- .05
- .05
- .05
- .05
- .28
- .28
- 47
- 47
- .47

SUBJECT

WABAM)
WABPM)
WADAM)
WADPM)
WAEAM)
WAEPM)
WBAAM)
WBAPM)
WBDAM)
WBDPM)
WBEAM)
WBEPM)
WDAAM)
WDAPM)
WDBAM)
WDBPM)
WDEAM)
WDEPM)
WEAAM)
WEAPM)
WEBAM)
WEBPM)
WEDAM)
WEDPM)

RH

SEDAMR3B -
SDAAMR4 -
SDBAMR4 -
SEAAMR4 -
SEBAMR4 -
SADAMR4 -
SAEAMR4 -
SBDAMR4 -
SBEAMR4 -
SAEAMR5 ~
SBEAMR5 -
SDEAMRS -~
SEBAMR5 -
SEDAMR5 -
SABAMR6 -
SBAAMR6E -
SADAMRT -
SAEAMR7 -
SEAAMR7 -
TO
WABAM
WABPM
WADAM
WADPM
WAEAM
WAEPM
WBAAM
WBAPM
WBDAM
WBDPM
WBEAM
WBEPM
WDAAM
WDAPM
WDBAM
WDBPM
WDEAM
WDEPM
WEAAM
WEAPM
WEBAM
WEBPM
WEDAM
WEDPM
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.15 SEDPMR3B

.39
.39
+39
.39
.39
.39
.39
.39
.05
.05
.05
.05
.05
.28
.28
417
471
<47

SDAPMR 4
SDBPMR4
SEAPMR4
SEBPMR4
SADPMR4
SAEPMR4
SBDPMR4
SBEPMR4
SAEPMRS
SBEPMR5
SDEPMRS
SEBPMRS5
SEDPMRS
SABPMR6
SBAPMRS6
SADPMR7
SAEPMRT7
SEAPMRY7

product weight availability constraints

<=z 3388

{=
{=
(=
{=
{=
=
{=
=

5288
4525
6654
23178
4391
3336
5347
5941

10521

4493
6674
4465
6763
6415

10302

5916
8832
3153
3905
4294
6723
31489
5101
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routing constraints

A-B shipments can travel by routes RI-R2 or R6.

o o s s e

WABAM - SABAMR1 -~ SABAMR6 = 0 ! balance at A

SABAMR1 - SABAMRZ2 = 0 ! balance at H
1

WABPM - SABPMR1 -~ SABPMR6 = 0 ! balance at A

SABPMR1 - SABPMRZ2 = 0 ! balance at H
1
! A-D shipments can travel by routes R1-R3A, R1-R4, or
! R7.
'

WADAM - SADAMR1 - SADAMRT = O ! balance at A

SADAMR1 - SADAMR3A - SADAMR4 = O ! balance at H

WADPM - SADPMR1 - SADPMR7 = O ! balance at A
SADPMR]1 - SADPMR3A - SADPMR4 = 0 ! balance at H

A-E shipments can travel by routes R1-R3A-R3B,
R1-R3A-R5, R1-R4-R3B, R1-R4-R5, R7-R3B or R7-R5.

WAEAM - SAEAMR1 - SAEAMRT7 = 0 ! balance at A

SAEAMR1 - SAEAMR3A - SAEAMR4 = O ! balance at H

SAEAMR7 + SAEAMR3A + SAEAMR4 - SAEAMR3B - SAEAMRS = O
! balance at D

WAEPM - SAEPMR1 - SAEPMR7 = 0 ! balance at A
SAEPMR1 - SAEPMR3A - SAEPMR4 = 0O ! balance at H
SAEPMRT7 + SAEPMR3A + SAEPMR4 -~ SAEPMR3B SAEPMRS5 = O

balance at D

! B-A shipments can travel by routes R2-R1 or R6.

WBAAM - SBAAMRZ - SBAAMR6 = 0
SBAAMR2 - SBAAMR1 = O

1
WBAPM ~ SBAPMRZ - SBAPMR6 = 0

SBAPMRZ2 - SBAPMR1 = O
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! B-D shipments can travel by

WBDAM -~ SBDAMRZ = O
SBDAMRZ - SBDAMR3A - SBDAMR4

WBDPM - SBDPMR2 = 0
SBDPMR2 - SBDPMR3A - SBDPMR4

! B-E shipments can travel by
! R2-R3A-R5, R2-R4-R3B, or
WBEAM -~ SBEAMRZ = O
SBEAMRZ - SBEAMR3A - SBEAMR4 =
SBEAMR3A + SBEAMR4 - SBEAMR3B -

WBEPM - SBEPMRZ2 = O
SBEPMRZ - SBEPMR3A - SBEPMR4 =
SBEPMR3A + SBEPMR4 - SBEPMR3B -

! D-A shipments can travel by
! R4-R1.

WDAAM - SDAAMR7 - SDAAMR3A - SDAAMR4

SDAAMR3A + SDAAMR4 - SDAAMRI1

WDAPM - SDAPMR7 - SDAPMR3A - SDAPMR4

SDAPMR3A + SDAPMR4 - SDAPMRI1
! D~-B shipments can travel by

WDBAM - SDBAMR3A - SDBAMR4 = 0
SDBAMR3A + SDBAMR4 - SDBAMR2

WDBPM - SDBPMR3A - SDBPMR4 =
SDBPMR3A + SDBPMR4 - SDBPMRZ2

(w]

! D-E shipments can travel by

WDEAM - SDEAMR3B - SDEAMRS 0

WDEPM - SDEPMR3B - SDEPMR5

0

11/29/91

routes R2-R3A or R2-R4.

0
0
routes R2~-R3A-R3B,
R2-R4-R5.
0
SBEAMRS = O
0
SBEPMRS5 = O

routes R7, R3A-R1, or

0

=0

1]
o

=0

routes R3A-R2 or R4-R2.

0

routes R3B or R5.
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E-A shipments can travel by routes R3B-R7,
R3B-R3A-R1, R3B-R4-R1l, R5-R7, R5-R3A-R1l, or
R5-R4-R1.
WEAAM - SEAAMR3B - SEAAMRS = 0

SEAAMR3B + SEAAMR5 - SEAAMRY
SEAAMR3A + SEAAMR4 - SEAAMRI1

SEAAMR3A - SEAAMR4 = O
0

WEAPM - SEAPMR3B - SEAPMRS =
SEAPMR3B + SEAPMR5 -~ SEAPMRT
SEAPMR3A + SEAPMR4 - SEAPMRI1

SEAPMR3A - SEAPMR4 = 0
0

nil o

! E-B shipments can travel by routes R3B-R3A-R2,
! R3B-R4-R2, R5-R3A-R2, or R5-R4-RZ.
WEBAM - SEBAMR3B - SEBAMR5S = 0

SEBAMR3B + SEBAMRS5 -~ SEBAMR3A - SEBAMR4 = 0
SEBAMR3A + SEBAMR4 - SEBAMRZ2 = 0
1
WEBPM - SEBPMR3B - SEBPMR5 = 0
SEBPMR3B + SEBPMR5 - SEBPMR3A - SEBPMR4 = O

SEBPMR3A + SEBPMR4 - SEBPMR2 = 0
! E-D shipments can travel by routes R3B or RS,

WEDAM - SEDAMR3B - SEDAMRS 0

WEDPM - SEDPMR3B - SEDPMR5 0

!
'
! route capacity constraints
1
1

! A-H leg of R1
R1AH) SABAMR1 + SABPMR1 +
SADAMR1 + SADPMR1 +
SAEAMR1 + SAEPMR1 <= 78000

! H-A leg of R1
R1HA) SBAAMR1 + SBAPMR1 +
SDAAMR1 + SDAPMR1 +
SEAAMR1 + SEAPMR1 <= 78000

! B-H leg of R2
R2BH) SBAAMR2 + SBAPMRZ2 +
SBDAMR2 + SBDPMRZ +
SBEAMR2 + SBEPMR2 <= 62000
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!
'

R3ADH)

!
'

R3AHD)

R3BDE)

!
'

R3BED)

R5DE)

R5ED)

THE TRANSPORT OPERATIONS PROBLEM
Appendix - Problem Formulation

H-B leg of R2
SABAMR2 + SABPMRZ +
SDBAMRZ2 + SDBPMRZ +
SEBAMRZ + SEBPMRZ2 <= 62000

D-H leg of R3A
SDAAMR3A + SDAPMR3A +
SDBAMR3A + SDBPMR3A +
SEAAMR3A + SEAPMR3A +

SEBAMR3A + SEBPMR3A <= 62000

H-D leg of R3A
SADAMR3A + SADPMR3A +
SAEAMR3A + SAEPMR3A +
SBDAMR3A + SBDPMR3A +
SBEAMR3A + SBEPMR3A <= 62000

D~H leg of R4
SDAAMR4 + SDAPMR4 +
SDBAMR4 + SDBPMR4 +
SEAAMR4 + SEAPMR4 +
SEBAMR4 + SEBPMR4 <= 62000

H-D leg of R4
SADAMR4 + SADPMR4 +
SAEAMR4 + SAEPMR4 +
SBDAMR4 + SBDPMR4 +
SBEAMR4 + SBEPMR4 <= 62000

D-E leg of R3B

- SAEAMR3B + SAEPMR3B +
SBEAMR3B + SBEPMR3B +
SDEAMR3B + SDEPMR3B <= 62000

E-D leg of R3B
SEBAMR3B + SEBPMR3B +
SEDAMR3B + SEDPMR3B <= 62000

D-E leg of RS
SAEAMRS + SAEPMRS +
SBEAMR5 + SBEPMRS +
SDEAMRS + SDEPMR5 <= 45000

E-D leg of RS
SEBAMR5 + SEBPMRS +
SEDAMR5 + SEDPMRS5 <= 45000
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! A-B leg of R6
R6AB) SABAMR6 + SABPMR6 <= 62000
1

! B-A leg of R6
RE6BA) SBAAMR6 + SBAPMR6 <= 62000
1

! A-D leg of R7
R7AD) SADAMR7 + SADPMR7 +
SAEAMR7 + SAEPMR7 <= 62000
! D-A leg of R7

R7DA) SDAAMRT7 + SDAPMR7 +
SEAAMR7 + SEAPMR7 <= 62000

! route use indicator constraints

USE1l) SABAMR1 + SABPMR1 +

SADAMR1 + SADPMR1 +
SAEAMR1 + SAEPMR1 +
SBAAMR1 + SBAPMR1 +
SDAAMR1 + SDAPMR1 +
SEAAMR1 + SEAPMR1 - 156000 USEl <= O
]
USEZ2) SBAAMRZ + SBAPMRZ +
SBDAMRZ + SBDPMRZ +
SBEAMRZ2 + SBEPMRZ +
SABAMRZ + SABPMRZ +
SDBAMR2 + SDBPMRZ +
SEBAMR2 + SEBPMRZ - 124000 USEZ <= O
'
USE3) SDAAMR3A + SDAPMR3A +
SDBAMR3A + SDBPMR3A +
SEAAMR3A + SEAPMR3A +
SEBAMR3A + SEBPMR3A +
SADAMR3A + SADPMR3A +
SAEAMR3A + SAEPMR3A +
SBDAMR3A + SBDPMR3A +
SBEAMR3A + SBEPMR3A +
SAEAMR3B + SAEPMR3B +
SBEAMR3B + SBEPMR3B +
SDEAMR3B + SDEPMR3B +
SEBAMR3B + SEBPMR3B +
SEDAMR3B + SEDPMR3B - 248000 USE3 <= 0
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USE4)

USE5)

USEG).

USET)

END

LEAVE

SDAAMR4
SDBAMR4 + SDBPMR4
SEAAMR4 + SEAPMR4
SEBAMR4 + SEBPMR4
SADAMR4 + SADPMR4
SAEAMR4 + SAEPMR4
SBDAMR4 + SBDPMR4
SBEAMR4 + SBEPMR4

SAEAMR5
SBEAMR5 + SBEPMR5)
SDEAMR5  + SDEPMR5
SEBAMR5 '+ SEBPMRS
SEDAMRS5 + SEDPMRS5

I+ 4+ + + +
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+ SDAPMR4 +

+

124000 USE4 <= 0

+ SAEPMR5 +

+
+
+
- 90000 USE5 <= 0

SABAMR6 + SABPMR6 +
SBAAMR6 + SBAPMR6 -

124000 USE6 <= 0

SADAMRT7 + SADPMR7 +
SAEAMR7 + SAEPMR7 +

SDAAMR7
SEAAMR7

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
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+ SDAPMR7
+. SEAPMRY

USE1l
USEZ2
USE3
USE4
USE5
USE6
USE7

+

124000 USE7 <= O
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PROBLEM SOLUTION

OBJECTIVE FUNCTION VALUE

1) 89535.350
VARIABLE VALUE REDUCED COST
USE1 .000000 -69920.000000
USEZ2 1.000000 15600.000000
USE3 .000000 22400.000000
USE4 1.000000 18000.000000
USEbS 1.000000 6600.000000
USE6 .000000 -86680.010000
USET 1.000000 20400.000000
WABAM .000000 .000000
WABPM .000000 .300000
WADAM 4525.000000 .000000
WADPM 6654.000000 .000000
WAEAM 2378.000000 .000000
WAEPM 4391.000000 .000000
WBAAM .000000 .000000
WBAPM 000000 .300000
WBDAM 5941.000000 .000000
WBDPM 10521.000000 .000000
WBEAM 4493.000000 .000000
WBEPM 6674.000000 .000000
WDAAM 4465.000000 .000000
WDAPM 6763.000000 .000000
WDBAM 6415.000000 .000000
WDBPM 10302.000000 .000000
WDEAM 5916.000000 .000000
WDEPM 8832.000000 .000000
WEAAM 31563.000000 . 000000
WEAPM 3905.000000 .000000
WEBAM 4294.000000 .000000
WEBPM 6723.000000 .000000
WEDAM 3149.000000 . 000000
WEDPM 5101.000000 .000000
SABAMR1 .000000 .000000
SABPMR1 .000000 .000000
SADAMR1 .000000 .000000
SADPMR1 .000000 .000000
SAEAMR1 .000000 .000000
SAEPMR1 .000000 .720000
SBAAMR1 .000000 .000000
SBAPMR1 .000000 .000000
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SDAAMR1
SDAPMR1
SEAAMR1
SEAPMR1
SBAAMR2
SBAPMR2Z2
SBDAMR2
SBDPMR2
SBEAMR2
SBEPMR2
SABAMR2
SABPMR2
SDBAMR2
SDBPMR2
SEBAMR2
SEBPMR2
SDAAMR3A
SDAPMR3A
SDBAMR3A
SDBPMR3A
SEAAMR3A
SEBAMR3A
SEBPMR3A
SADAMR3A
SADPMR3A
SAEAMR3A
SAEPMR3A
SBDAMR3A
SBDPMR3A
SBEAMR3A
SBEPMR3A
SAEAMR3B
SAEPMR3B
SBEAMR3B
SBEPMR3B
SDEAMR3B
SDEPMR3B
SEBAMR3B
SEBPMR3B
SEDAMR3B
SEDPMR3B
SDAAMR4
SDAPMR4
SDBAMR4
SDBPMR4
SEAAMR4
SEAPMR4
SEBAMR4
SEBPMR4
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.000000 .000000
.000000 . 000000
.000000 .000000
.000000 .000000
.000000 ‘ .000000

. 000000 . 000000

. 5941.000000 .000000
10521.000000 .000000
4493.000000 .000000
6674.000000 .000000
.000000 .000000
.000000 .000000
6415.000000 .000000
10302.000000 .000000
4294.000000 .000000
6723.000000 .000000
.000000 1.190000
.000000 1.190000
.000000 .000000
.000000 .000000
.000000 1.110000
.000000 .000000
.000000 . 000000
.000000 .720000
.000000 .720000
.000000 .720000
.000000 .000000
.000000 .000000
.000000 .000000
.000000 . 000000
.000000 .000000
.000000 .100000

. 000000 .100000
.000000 .100000
.000000 .100000
.000000 .100000
.000000 .100000
.000000 .100000
.000000 .100000
.000000 .100000
.000000 .100000
.000000 1.190000

. 000000 1.190000
6415.000000 .000000
10302.000000 .000000
.000000 .720000
.000000 .720000
4294.000000 .000000
6723.000000 .000000
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SADAMR4
SADPMR4
SAEAMR4
SAEPMR4
SBDAMR4
SBDPMR4
SBEAMR4
SBEPMR4
SAEAMRS
SAEPMRS
SBEAMRS
SBEPMR5
SDEAMRS
SDEPMR5
SEBAMRS
SEBPMR5
SEDAMRS
SEDPMR5
SABAMRG6
SABPMR6
SBAAMR6
SBAPMR6
SADAMR7
SADPMR7
SAEAMR7
SAEPMR7
SEAAMRT7
SEAPMR7
SDAAMRY
SDAPMR7
SEAAMR3B
SEAAMRS
SEAPMR3B
SEAPMRS
SEAPMR3A
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.000000
.000000
.000000
. 000000
5941.000000
10521.000000
4493.000000
6674.000000
2378.000000
4391.000000
4493.000000
6674.000000
5916.000000
8832.000000
4294.000000
6723.000000
3149.000000
5101.000000
.000000
.000000
. 000000
.000000
4525.000000
6654.000000
2378.000000
4391.000000
3153.000000
3905.000000
4465.000000
6763.000000
.000000
31563.000000
. 000000
3905.000000
.000000
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.720000
.720000
.720000
.000000
.000000
000000
.000000
. 000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
. 000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.330000
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ROW SLACK OR SURPLUS DUAL PRICES
WABAM) 3388.000000 .000000
WABPM) 5288.000000 .000000
WADAM) .000000 1.370000
WADPM) .000000 .870000
WAEAM) .000000 1.870000
WAEPM) .000000 1.220000
WBAAM) 3336.000000 .000000
WBAPM) 5347.000000 .000000
WBDAM) . 000000 1.870000
WBDPM) .000000 1.170000
WBEAM) .000000 2.420000
WBEPM) .000000 1.560000
WDAAM) .000000 1.840000
WDAPM) .000000 1.340000
WDBAM) .000000 1.870000
WDBPM) .000000 1.170000
WDEAM) .000000 .550000
WDEPM) .000000 .380000
WEAAM) .000000 1.920000
WEAPM) .000000 1.270000
WEBAM) .000000 2.420000
WEBPM) .000000 1.560000
WEDAM) .000000 .550000
WEDPM) .000000 .390000

26) .000000 1.100000

27) .000000 .300000

28) .000000 1.100000

29) .000000 .300000

30) .000000 470000

31) .000000 -.330000

32) .000000 .470000

33) .000000 -.330000

34) .000000 .520000

35) .000000 -.280000

36) .000000 .050000

37) .000000 .520000

38) . 000000 .440000

39) .000000 .050000

40) .000000 1.100000

41) .000000 .800000

42) .000000 1.100000

43) .000000 .800000

44) .000000 690000

45) .000000 .390000

46) .000000 .690000

47) .000000 .390000
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