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ASSIGNMENT PROBLEMS 
FORMULATION OF TRANSPORTATION AND L . 

An important class of linear programming problems can be formulated by using a special 

kind of network model. Transportation problems ref er' simply' a selection of routes to transfer 

commodities from a number of sources to a number of destinations with the objective function 

of minimizing total cost. The classical transportation problem has one more characteristic that 

is the total demand equals to total supply. Cost of each shipment is proportional to the amount 

shipped. 

General formulation is: 

minimize v=l:l:cifii 
i j 

subject to: 
11 

l:xij=ap j=l,2, ... ,m 
i=l 
m 

L xii=b;, i=l,2, ... ,n 
j=l 

where; 
ai indicate supply amounts 
bi indicate demand amounts 

(1) 

(2) 

cij indicate the costs of carrying one unit of xii from i to j 

By changing some constraints or adding some constraints, it is possible to formulate a 

number of problems as a special type of transportation problem. 

Constraints (1) or (2) could be relaxed by changing the equality sign to inequalities (i.e. 

less than or equal to type constraints) 

Physically, this simply means that more units may be available at the origins than are 

required at the destinations (or, more units may be acceptable at the destinations than are 

available at the origins). 
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. ali. can be handled easily by the addition of m (or n) slack variables. Then 
These mequ ues 

the constraints become: 

" L xii + xilt=a
1
., j=l;2., ... ,m (3) 

i•l 

=b}., i=l;2., ... .;n (4) 

As cost coefficient to these new slack variables, we could assign zero and then problem 

turns out to be a classical transportation problem. 

We might note that after a transportation problem is formulated in the classical form 

(constraint sets (1) to (3)), we can replace each cost coefficient, cq , by cq+ Y for any constant 

Y without changing the Xq which give an optimal solution [11]. This can be done because this 

substitution for each cij changes the objective function value only by the constant 

Generalized Transportation Problem's formulation is different from transportation 

problem. It's formulation is stated by Hadley [11] as follows: 

minimize (or maximize) z=I: .Ecifii 
i J 

subject t:o: 

" L df·· :i= x .=a., l !f SI I a;20, i= 1;2., ... ,m (5) 
Jsl 
m 

.:Exv =b,., b?O, j=l;2., ... .;n (6) 
isl 

(Note that xsi can be considered to be slack or surplus variables) 

One particular example could be the machine assignments for the generalized 
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transportation problem. Two basic differences between transportation and generalized 

transportation problems are: 

1. The rank of the matrix of the coefficients of the xv in (5) and (6) is, in general, 

(m+n) rather than (m+n-1). It means that all constraints are independent [ll] . 

. 2. The optimal basic solutions may involve noninteger values of thexy, even though 

ai , bi are integers. 

Transshipment Problem 

The original transportation problem deals with the selection of shipping routes so as to 

minimize the cost of shipping a uniform commodity from specified origins to specified 

destinations. The amounts to be sent from each origin, the amounts to be received by each 

destination, and the cost per unit shipped from any origin to any destination are specified. 

Tfa!lsshipment is not considered. Transshipment is that any shipping or receiving point is also 

permitted to act as an intermediate point in seeking an optimum solution. This technique is used 

to find the shortest route from one point in a network to another [14]. 

For the formulation of problem, let us assume N points which are either shippers or 

receivers. gi , (i=l,2, ... ,N) is the net amounts to be shipped by each point. If ai=amount 

shipped by each point including transshipment and bi=amount received by each point including 

transshipment; they have to satisfy the equality gi=a;-b1 , i=l,2, .. ,N. Cy is the unit cost of 

shipment from i to j, and cu=O. 

Next step is to form the problem as a transportation problem with N destinations and N 

origins. 

A transshipment problem is actually a transportation problem and by this formulation, 
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we can conclude that this transportation problem can have 2(m+n)-1 variables different from 

zero [11]. However, (m+n) of these variables represent the stockpiles (shipping from origin i 

to destination i), there are no more then (m+n-1) variables of interest which are different from 

zero. 

The Capacitated Transportation Problem 

With the available solution techniques for transportation problems, it is easier to solve 

these problems treating with bounded variables. This is called as capacitated transportation 

problem. General formulation is same as the classical transportation problem except that there 

are additional upper-bound constraints on each variable: 

Assignment Problems 

The term "assignment" describes the problem as finding the optimal way to assign n 

persons to n jobs. Assumption is that the individuals have various suitability index for a 

particular job [Dantzig, page-316]. This is a combinatorial problem. For example, if there are 

n individuals and n jobs for assignment, there are n! different possibilities for the assignment. 

Since the number grows rapidly, it is being seeked for more practical solution methods rather 

than checking every permutation combination. 

Formulation of an assignment problem shows slight differences from transportation 

problem; 
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II II 

minimize z= LL Ci.fii 
i-1 j•l 

subject to: 
I! 

L xy= l, for 'Vj (7) 
i•l 
I! 

L x,= l, for 'Vi (8) 
i•l 

x ={ 1, if the ith person is assigned to the jth job 
iJ 0, otherwise 

ciJ:i!:O, for 'VxiJ 

Generalized Assignment Problem 

This problem, a generalization of the classical assignment problem. A better formulation 

would allow the assignment of several tasks to a single individual, provided these tasks do not 

require more of resource then is available to the individual. It can be seen as a specialized 

transportation problem in which the amount demanded at each destination must be supplied by 

a single origin if the resource required by individual i to do task j is constant for each individual 

i [Ross, Soland pp:91-93]. 

General formulation is as follows: 

minimize z= L L C;f i/ 
iEI )€J 

subject to: 

L r i.fii s.b,~ for 'V iEI 
j€J 

LXq =l, for 'V jEJ 
iEI 

xiJ=O or 1 

(9) 

(10) 

In this formulation, I={l,2, ... ,m}, is a set of individuals, J ={1,2, ... ,n} is a set of tasks. 

cif=cost if i assigned to taskj, rif=the resource required by agent i to do taskj, bi>O is the 
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amount of resources available to i [Nauss, page-48]. 

There are many potential application areas for generalized assignment problems such as, 

assigning software development tasks to programmers [Ross, page-92]. 

Quadratic Assignment Problem 

This is a more generalized formulation and has more difficulties to solve. Now, our extra 

conditions are; 

each individual must be assigned to exactly one member of tasks, 

each task must have exactly one member of individual assigned to it. 

Typical applications include problems of facilities location, space allocation, scheduling 

and routing. These problems different from the classical linear assignment problem in that the 

members to be assigned are treated as a set of interconnected rather than independent objects 

[Ligget, page-442]. 

II. SOLUTION TECHNIQUES 

2.1.1. Primal-Dual Algorithm 

The primal-dual algorithm has been developed by Dantzig, Ford and Fulkerson, 

eliminates the problems coming from introducing artificial variables in two-phase method and 

Big-M method. Since the criterion used in two-phase and Big-M methods to select the variable 

to enter the basis is concerned with driving the artificial variables to zero, there is no guarantee 

that it works for optimality [Hadley, page-258]. 

Primal-dual algorithm introduces the artificial variables into the primal problem. But, the 

dual problem is used to determine which variables can enter the primal basis. 

In other words, solution of the dual problem gives the entering vector of primal problem. 
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A new solution for the dual can be found which gives new entering vectors for primal basis 

maintained. Each solution to the dual gives the decrease in the dual objective [Hadley, p-258]. 

2.1.2. Primal Method for Transportation Problem 

The well-known Hungarian Method is a dual method. Balinski and Gomory [l], describe 

a dual algorithm of Hungarian Method, so they called their technique as "Primal" technique. The 

Hungarian Method provides at each intermediate computational step a dual feasible vector (U, V) 

and a corresponding infeasible vector X orthogonal to first vector. Balinski-Gomory technique 

provides at each step a feasible X vector (a solution of transportation or assignment problem) 

and a corresponding orthogonal infeasible (U,V) vector. As a transportation problem, let's 

consider; 

minimize 

subject to: 

LXq=bi 
j 

L Xq=C1 
i 

Xq~O 

a(X)= L aqxii 
i. j 

The dual problem is: 

maximize Jl(U,V)= L b.i1.i+ L c1vj 
i j 

subject to: 

\;/ i 'j 

If u;+l-J =::; aii, condition for all (ij), then X and U, V constitute optimal solutions. 

Otherwise, there exists some entry (k,l) such that ut +vt > aJ:J. 
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The following conditions show a new optimal pair, X' and U', V' with X' feasible, for 

the computational stage I (column l). 

u/ +v/ $ aii if ui+~ $ aii 

u;'+~· $ au for all i, column. I 

This new pair satisfies a(X') $ a(X) [l, page-586]. 

Each new derived transportation problem is considered identical to the first problem 

except that column I is replaced by two columns 11 and 12 having nonnegative integer demands. 

At every step, there are a derived transportation problem and its dual problem. 

2.2. Transshipment Problem 

The main idea of this problem is to find the shortest route from one point in a network 

to another. This is an extension of original transportation (To) problem [Orden, page-277]. 

Dantzig's simplex technique provides a satisfactory computation for transshipment 

problem (T1) [Orden, page-278). 

The general procedure of the solution is as follows : T1 is to be converted to the form 

of T0 by treating each point as shipping and receiving points. The unit cost of shipment from a 

point to the same point is equal to zero. Orden presents the procedure as follows: 

1. Let the total amount of shipped equal to be to the total amount of received. eg is 

the specific cost of shipment from point i to j. c;;=O and gi is the specified net 

amounts of shipping (note that some gi are positive and some are negative). If 

ai=amount shipped by each point including transshipment and b;=amount 

received by each point including each point then gi=arbi has to hold for 

i=l,2, ... ,M. 
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2. Set up the transshipment problem in the form of a transportation problem in 

which there are M origins and M destinations. The amounts to be shipped , a;, 

and the amounts received, b;, must be greater then zero. 

(A) 

wheres is a positive constant {a stock pile) 

3. Computethe minimum cost solution to the T0 problem. Let C' be the total cost 

and Xq' be shipments of the minimum cost solution. 

4. Discard xii' , because redundant, items. Since each Xu• is contained in both the 

amount shipped ~ • and the amount received b; ', may be deducted from both 

~" = a/ - Xu' 

b " . b, , 
i =. i - Xu (B) 

A feasible solution to the T 0: 

Xu" = 0 (C) 

5. Convert the results in the form (B) and (C) to the solution to the transshipment 

problem. The min cost solution involves (M-1) point-to-point paths for which 
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2.3. Assignment Problem Solution Techniques 

2.3.1. The Alternating Basis Algorithm for Assignment Problems 

When solving assignment problems by simplex method we face with the unnecessary 

inspection of alternative basis representations of the extreme points. Barr, Glover and 

Klingman' s [3] alternating basis algorithm for assignment problems reduces the convergence time 

for degenerate problems compared to simplex method. They show that if an assignment problem 

has a feasible solution, optimal solution can be found by considering only bases of this type 

[3,page-2]. In this method, problem solver does not have to consider all feasible bases to be 

candidates for processing to an optimal basis. It has been shown that if assignment problem has 

an optimal solution then it also has an optimal solution with the unique basis tree structure, 

completed with the Alternating Path (AP) structure. So, it is not necessary to check all points 

in a "feasible spanning tree" like in the case of simplex method. Barr, Glover and Klingman 

state that "AB algorithm is a procedure to exploit the properties of the AP basis structure in a 

manner that substantially reduces the impact of degeneracy" [3]. Giving some definitions makes 

easy to understand the algorithm. They define 11 Alternating Path" (AP) basis with the help of 

following conditions: 

1. The root node is an origin node. 

2. All 1-links are Origin-Destination links. 

3. All 0-links are Destination-Origin links. 

If a rooted basis tree for an assignment problem has above specifications, it becomes AP 

basis. They represent the assignment problem as a graph, consisting of a set of origin nodes with 

unit supplies and a set of destination nodes with unit demands. Directed arcs from origin nodes 
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to destination nodes accommodate the flow and cost involved if the flow exists. Their algorithm 

basically; 

1. Find an initial any feasible AP basis for the assignment problem. An artificially 

feasible initial AP basis can be constructed for an nxn assignment problem by 

assuming that arcs exist from each origin node to all destination nodes where the 

artificial arcs have a "Big-M" cost. 

2. Successively apply the simplex pivot procedure keeping the root fixed and picking 

the link to leave. When the simplex method is applied to AP, the pivot can be 

carried out give a new AP basis for any entering non-basic arc by dropping the 

unique link in the basis equivalent path attached to the origin node of the entering 

arc. 

Before the criteria are satisfied, the procedure does not stop. Authors of this algorithm 

have also proved that Alternating Path algorithm is finitely converging without using any 

external disturbance. 

2.3.2.Bertsekas' Algorithm for Assignment Problem 

Bertsekas' algorithm [4], is using some basic definitions which are common in Hungarian 

Method. Both algorithms involve flow augmentations along with alternating paths, changes in 

the dual variables. Difference is coming from the roles of these definitions. 

In Bertsekas' method, augmentation is being used when augmentation is no more possible 

to continue the process of increasing prices of assigned sinks without violating the 

complementary slackness constraint. 

This algorithm is also using the dual and primal variables together. In his paper, 
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Bertsekas explains his algorithm with a maximization problem for which the dual problem is: 

N N 

minimize Z"'Lmi+LPi 
i-1 j•l 

subject to: 

mi +pi ~ aij , V ( i , j ) EL. 

where pi=prices and mi=profit margins, and L=set of directed links. 

His algorithm can be stated as below [4, pp:155-157] 

Initialize the problem 

m.t+1 + p.t+1 = a .. 
I J IJ 

if (iJ) is an assigned pair 

for every (i,n) unassigned pair 

(k+ l)si iteration of the algorithm 

Choose a source i' which is unassigned. 

Compute the maximum profit margin 

m '= max { ag' - pf I (i ', j) E unassigned } 

Compute also the ti second maximum ti, m ti, profit margin. 

Then according to equalities or inequalities of m' and m", Case.1 and Case.2 procedures 

came. After the Ic1h iteration of the algorithm some of the items have been assigned to persons 

that have prices pf. 

If Case.1 holds at the (k+l)si iteration, m' >m" or m'=m" and sinkj' is an unassigned 

one, the unassigned i' selects this item j' that offers maximum profit margin. 

Case.2 is that the m' = m" and for some i, was assigned to any item before, we have (i,j ') 

pair. In this case, algorithm is trying to find an augmenting path not containing j' from source 
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i" to an unassigned sink. There are two possibilities: Either an augmented path will be found, 

or a change in the dual variables will be effected. 

For the first case, the old link is retained. For the second case, the old link (i,j ') is 

replaced by (i' ,j') in ~+1 step and no new sink is assigned. In this case, the dual variables 

change. After this step, augmentation and change of variables come. 

Termination comes in this algorithm with a change in the dual variables and a new 

iteration is started with a new unassigned sink. The iteration can terminate with a flow 

augmentation, and a change in dual variables. 

2.3.3. Signature Method for the Assignment Problem 

This method is a dual simplex method and developed by Balinski [2]. In this solution 

technique, each step goes from one dual feasible basis to a neighboring one. A difficulty comes 

from ignoring the primal problem. This difficulty is that the method may encounter a dual 

feasible basis that already gives an optimal assignment, prior to its termination [Balinski, p:527]. 

Signature method searches among dual feasible bases one that has signature. 

The "signature" of a tree Tis the vector of its row node degrees a= (a1, a2,. .. ,a,J 

a1~1 
Balinski also defines the "signature" of a dual feasible basis of the assignment problem 

as : "n-vector whose i11i component is the number of nonbasic activities of type (i,j)". His 

theorem is: 

If T(u,v) is a tree with some one row node i* of degree 1 and the remaining rows of 

degree 2, then the permutation k defined as follows solves the assignment problem: 
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k(i*) =j 

k(i) =j 

for (i* ,j) E T(u,v) 

i=i* for (i,j) E T(u,v) 

This theorem, and the signature methods, proposes a solution which is looking for a tree 

whose signature contains exactly one 1 and otherwise 2,s. This method, iterates from one tree 

T to another T'. T' is obtained by pivoting. 

2.3.4. Branch and Bound Algorithm for the General AP 

Ross and Soland [15], propose an algorithm for general AP. In Ross and Soland's 

algorithm, the bound is calculated in part by solving binary knapsack problems rather than using 

linear programming. Relaxed problem gives the lower bound. The lower bound is increased, in 

this algorithm, by the sum of the values of the objective functions obtained from solving for each 

binary knapsack problem. The solution of this knapsack problem shows the tasks which must 

be reassigned from agent i to another agent in order to satisfy the resource restriction on agent 

i. The optimal solution of these knapsack problems indicates those reassignments that lead to a 

minimal increase for the value of z. 

By using binary-knapsack approach it is possible to assign new values to lower bound. 

Additionally, the solutions of these problems indicate new assignments to agents that could be 

a feasible solution. 

2.3.5. Overview of Quadratic Assignment Problem Algorithms , 

In most of the cases, it is hard to solve quadratic assignment problems computationally. 

So, heuristic techniques are being employed to get a reasonable solution in real problems. 

Typical applications of quadratic assignment problems are : facilities location, space allocation, 

scheduling and routing. Ligget [12], examined the effective heuristic methods and compared 
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them. Quadratic assignment problem solving methods has been classified into two groups : 

constructive initial placement techniques and iterative improvement techniques [Ligget, p:442]. 

a. Constructive Techniques 

This method was developed by Graves and Whinston [10]. It combines the enumerative 

procedure with probability theory to construct an implicit enumeration algorithm. Ligget states 

these techniques as "n-stage decision process for intelligently building a solution from scratch". 

It has been added that constructive methods can be considered to take either "local 11 or 11 global11 

orientation to problem solving. Whinston-Graves method gives a global constructive procedure. 

b. Improvement Techniques 

A solution found by an improvement method, highly depends on the initial starting 

solution. Usually these starting solutions are generated randomly [Ligget, pp:442-443]. After 

finding an initial solution, method tries to improve the solution. Improvement methods differ 

according to the exchange selection process. 

ill. APPLICATIONS-DISCUSSION 

3.1. Possible Applications in Industrv 

There is a wide range of applications for which transportation method of LP modelling 

is well suited. Some of the more typical applications may be summarized as follows: 

1. Product Distribution 

The objective in this application is to minimize the cost of serving multiple destinations 

from multiple sources of supply. The typical case involves to determine which particular 

factories should send specific destinations (markets or warehouses). 
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The simple version of this problem allocating the production of suppliers to particular 

markets by the objective function of minimizing total transportation cost. In this case it is 

assumed that cost is directly proportional to the amount shipped. 

Other case could be to find the combined costs of production and distribution by the 

objective function of minimizing total cost. If the sales prices are a function of the supplier, we 

can enlarge the problem by the objective function of maximizing the total profit of serving the 

aggregate market. This involves explicit consideration of production costs, transportation costs, 

and market revenue [Siemens, page-124]. 

2. Production Planning and Scheduling 

Our objective in this case is to develop a minimum cost production plan to serve the 

anticipated aggregate demand during some specified planning period. Again we could have 

different special cases related to production planning problem. 

Production costs may be different for different plants, transportation costs are variable, 

and inventory costs must be considered when producing for inventory. The optimal production 

schedule involves determining which plants should be utilized during each production period, 

for regular or overtime. 

For example, if a plant's products demand fluctuates over a period of time, there are 

three different ways of adjusting the production of the output to meet the demand : 

a. Change the level of the regular production 

b. Use overtime production at the necessary period 

c. Store the present excess to cover future shortages [Chvatal, pages-322,323]. 

For the products which are not usable over a time period these options change. Different 
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type of formulations are possible. 

The problem of scheduling regular and overtime production can be solved by the 

transportation method. The problem is to schedule production so that storage (inventory) costs 

are balanced against overtime costs by minimizing the total cost. 

General formulation can be in the form: 

subject to: 

j j 

L xij + LYy = b; , j=l)., ... ,n (D) 
i•l i•l 

" L:xii ~ a; ' i= 1)., ... ,n (P1) 
;-1 

II 

LYij ~ ai i::: l)., ... ,n (Pz) 
;-1 

[Hadley, pages:440-441] 

Where·(P1) and (P:J are the production constraints and (D) is the demand constraint. 

x1,;-number of units of the product produced on regular time in period i for sale in period j 

yY'-number of units produced on overtime in period i for sale in period j 

arnumber of units produced in regular time, period i 

a/amount of product produced in overtime and period i 

brnumber of units demanded in time period j 

h-storage charge 
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3. Allocation of Production Facilities (machine Assignment Problem) 

When a variety of jobs (or products) can be performed on a number of different machines 

which have different output capacity and cost, it is necessary to allocate the various jobs to the 

several machines by minimizing cost, time, etc. Formulation of this type of problem gives us 

the generalized transportation problem. 

4. Personnel Assignment 

In this case, objective function could be to minimize cost by assigning proper individuals 

to proper jobs. Another case is to maximize utilization of personnel. Each particular personnel 

has different preference for each job. Assignment problem formulation handles these kind of 

applications. 

5. Assembly Line Balancing 

The objective of assembly line balancing is to allocate work elements to various lines. 

Purpose of this study is to make the work load uniform. Another objective can be to minimize 

the total idle time [Siemens, page-125]. 

3.2. Plant Location Problems 

There is a close relationship between transportation problem formulation and plant 

location problem. Efroymson and Roy [9], state the location as "a transportation problem with 

no constraint on the amount shipped from any source". If the plant is "closed", there is no cost 

associated to this route. If the plant is "open", the cost is positive and independent from the 

amount shipped. We can't treat this problem as a linear problem, because the fixed charge 

associated with each plant does not vary linearly with the amount shipped from the plant 

[9,page-361]. 
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Efroymson and Roy have given a new formulation to this problem. They use; 

Ni: : the set of plants that can supply customer k 

P1 : the set of those customers that can be supplied from Plant i 

minimize z= :E :E cqxq+ :EftYt 
i j i 

subject to: 

I: xv = 1 , i= 1,2, ... ,n 
teN_i 

Os; L xv s; niyi , i=l,2, ... ,m 
iEP1 

Y; is 0 or 1 , for i=l,2, ... ,m 

Then they conclude that the optimal solution is; 

for V iEK,_ 

K1,Ko are the sets of y's that are fixed at 1, 0 respectively and 

K2 is the set of indices of remaining y's 

One disadvantage of their formulation is the use of small number of plant k. On the other 

hand, they also extended their studies to handle plant location problems which has a variable 

plant cost as well as a fixed cost [9, pp:364,365]. 

Cooper [7], dealt with the transportation location problems. In his paper, he described 

an enumeration algorithm and two heuristic algorithms for the problem. In enumeration 
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algorithm, after setting the transportation tableau, he generates the connected graph of all basic 

feasible solutions. Then for each solution, solves the set of location problems. 

Cooper's first heuristic is "alternating transportation location". Basic idea in this heuristic 

is to locate sources alternatively, given a pattern of allocations and to determine an allocation 

given a set of source locations [7, page-104]. The drawback of this method is coming from 

convergence problem. There is no guarantee for the convergence to the global maximum. 

3.3 Comparison of the Methods 

It has been summarized several solution techniques for transportation and assignment 

problems. Each one has different specifications, but the purpose of these studies is same; to find 

a more efficient algorithm. 

Balinski-Gomory' s primal method for the assignment and transportation problems gives 

a chance to bound the number of steps required to solve these problems. The best bound is 

n(n+ 1)/2 labeling for the n*n assignment problem. This bound is the same as the best known 

bound for the Hungarian Method [l,page:578]. But their algorithm does not require the use of 

a basic solution which is necessary for the simplex method and which makes the problem more 

difficult to solve (due to degeneracy). 

Major differences are involved in the Alternating Basis Algorithm [3,page:2]. These basic 

differences between this algorithm and previous primal extreme point methods are; 

1. the rules of the algorithm automatically gives the special structure basis, 

2.the algorithm finitely convergent without using external techniques, 

3.in some problems degenerate basis exchanges. 

Bertsekas gives some comparison results between his technique and the Hungarian 
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method. Bertsekas' algorithm can converge ten or more times faster than the Hungarian method 

with the N > 100 where N is the number of assigned people. 

Signature method described by Balinski[2] solves the assignment problem at most 

(n-l)(n-2)/2 basis changes. This number is better than the known n(n+ 1)/2 steps. 

As discussed before, for the quadratic assignment problem, there is no well established 

algorithm. Some heuristics usually gives a good feasible solution, by the consideration of cost. 

In general, LP problems have a common difficulty: Data availability. To come up with 

a realistic formulation, problem solver needs accurate data. Same difficulty exists for 

transportation and assignment problems. In the simplest form of transportation problem, we need 

predetermined supply and demand numbers. In assignment problems usually it is difficult to 

quantify utility involves for each individual. In a well documented environment determination 

of the cost associated with each route in the transportation problems could not be a big problem. 

But, most of the time setting these data is a tedious job. 

Additionally; for the real, large scale problems we may need some manipulation on 

formulation of problem to get a transportation or assignment problem. This kind of relaxation 

saves time to solve big, complex problems. 

N. EXAMPLE PROBLEM 

For the illustration of an assignment problem Carpaneto, Martello, and Toth's computer 

code was used [5]. Their algorithm solves the assignment problem to give minimum sum of cost. 

Linear minimum sum assignment problem defined as "given a square matrix of order n, 

assign each row to one column, and vice versa, so as to minimize the cost sum of the row-
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column assignment" [5,page:193). Their algorithm is based on primal-dual algorithms. 

Their code is using APC subroutine to find the minimum cost assignments. This 

subroutine needs INCR, INIT, and PA TH subroutines. In the second case, subroutine APS gives 

the solution of the minimum sum assignment problem for the sparse matrix. With the given data 

set program was run. Output and the code of algorithm are added to the paper. 

Meaning of output parameters: 

z= cost of the optimal assignment= ..... 

F(I) = column assigned to row I 

Meaning of input parameters: 

N = number of rows and columns of the cost matrix. 

A(I,J) = cost of the assignment of row I to column J. 
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