

 ETM OFFICE USE ONLY
Report No.: See Above
Type: Student Project
Note: This project is in the filing cabinet in the ETM department office.

Title: Improving Software Productivity, Practices In U.S. And Japan

Course:
Year: 1991
Author(s): K. Nasri, R. Nassib and R. . Sivakumar

Report No: P91020

Abstract: This study discusses various aspects of the software
development process and examines various issues that contribute to the
"software crises." A detailed case study is presented of the early U.S. effort
at SDS along with "software factories" set up by major Japanese companies
Hitachi, Toshiba, NEC, and Fujitsu. Finally, results of a survey of software
professionals is presented with conclusions aimed at helping companies
improve the productivity of their engineers, the quality of their engineers
and the quality of their products.

-·-~·.-.~~------~

11 IMPROVING SOFTWARE
PRODUCTIVITY, PRACTICES IN

U.S. AND JAPAN

K. Nasri, R. Nassib, R. Sivakumar

EMP-9120

"Improving Software
Productivity, Practices in

U.S. and Japan"

by

Kaveh Nasri
Reza Nassib

Ramamurthy Sivakumar

Abstract

The productivity crisis in the software industry
was identified as early as 1968. Some of the early
initiatives toward averting this crisis was begun
in the US through the setting up of the Software
Development Corporation and at large computer
companies such as IBM. But due to a variety of
reasons most of these initiatives withered away
and long term gains in the US computer industry
have been minimal.

In contrast some large Japanese companies have
leveraged off the early gains made by the US
effort and advanced their software development
process and have made substantial. progress in the
last decade. The primary difference between the
US and Japanese initiatives has been the long
term strategic commitment from the management
to improve their process.

This study discusses various aspects of the
software development process and examines
various issues that contribute to the "software
crisis". A detailed case study is presented of the
early US effort at SDS along with "software
factories" set up by major Japanese companies
Hitachi, Toshiba, NEC, and Fujitsu. Finally,
results of a survey of software professionals is
presented with conclusions aimed at helping
companies improve the productivity of their
engineers and the quality of their products.

1. Introduction

Computers have changed the way we live. Their
presence permeate our lives. Every time we shop
with a credit card or make a phone call, we utilize
a computer without even thinking about it. The
us~ of computers ranges from the most benign
(video games) to the most critical (air traffic

control and life-sustaining medical equipment).
As computers are used in more sensitive
applications, the cost of errors approach
catastrophic proportions (such as financial
transactions or accidental launch of nuclear
missiles).

As the cost of computer hardware continues to
drop dramatically, the computing power once
only reserved for a few large organizations are
now available in ordinary desktop computers to
everyone. As larger and more complex hardware
have become mainstream, it has become
necessary to build larger and more complex
software systems. of high quality.

The term software engineering first appeared in
the late 1960's to describe ways to develop,
manage, and maintain software so that resulting
products are reliable, correct, efficient and
flexible[2]. Humphrey [7] defines it as "the
disciplined application of engine.ering, scientific,
and mathematical principles, methods and tools
to the economical production of quality
software".

As the. size of software projects have grown,
many issues which were not deemed very
important in the early days of computers, such as
formal development process, have turned out to
be important barriers to producing cost-effective
high-quality software systems. The term
"software crisis" has been used to refer to the
condition of projects that have missed budgets
and late schedules, are of poor quality and do not
work as specified.

The focus of this paper is on various ways to
deal with this crisis by improving the
productivity of software engineers and the quality
of the software produced. We present findings
from a survey of software professionals that we
have conducted both locally and over a worldwide
computer network. While our sample size of 22
respondents is not large enough to imply
conclusi~e results, a number of very interesting
observations can be made, many of which are
supported by the literature. Various Japanese
companies have challenged the dominant role of
the US in several industries in the past decade.
Some believe that they are about to repeat this in
the software industry by implementing the
concept of "software factories". We will examine
this issue by presenting a summary of 4 case
studies of leading Japanese computer companies
and an overview of similarities and contrasts in
softwar~ practices in some US and Japanese
companies based on research literature. Finally,

we will make recommendations on improving
productivity by improving the development
process and human resources policies, and by
implementing those practices through providing
documentation and training.

2. Related Issues Not Covered in this
paper

This section briefly describes important issues
related to software management which we will
not cover in this paper or our survey. However,
we consider them important enough to be
mentioned.

2.1. Productivity Measurement

Productivity is the amount of constructive work
accomplished by an engineer in a given time
period. This is a complex subject which has
produced a vast body of research in itself. Various
productivity metrics have been proposed ranging
from simple calculations of lines of code
produced per person per month to complex
measurement of the infonnation flow between a
system's components. Since this is not the focus
of this paper we would like to refer readers to
publications by Demarco [5] who looks at the
major stages of software projects, namely
specification, design and development; as well as
Henry and Kafura [6] who go one step beyond
providing metrics, by describing how their
measurements can be used to discover flaws in
the system during the design and development.

2.1. Scheduling

It is especially difficult to estimate a reasonable
schedule for various milestones during the
specification, development, and test phases of
software projects. Since scheduling of a project
directly affects its budget, wrong schedules entail
wrong budgets. Tom DeMarco [5], provides an
interesting scheme for more effectively
measuring the progress of software projects.

In many cases when a software project slips
beyond its deadlines, the management takes one
or more of the following steps in order to remedy
the problem. These actions are also pointed out
by Boehm [11]:

• Add more people to the project, which
negatively effects the project progress [10]

2

• Reduce efforts in various stages of the
product development, i.e. testing and
documentation, which obviously reduce
the quality.

• Cancel the entire project, which has
happened many times.

Another important factor in controlling costs of
software development is scheduling.

3. Software Development Process

Humphrey [7} states that an important first steps
in addressing software problems is to treat the
entire software task as a process that can be
controlled, measured, and improved. He defines
the software engineering process to be "the total
set of software engineering activities needed to
transfonn a user's requirements into software". In
order to produce higher quality software at a
lower cost, this process needs to be improved
within each project. He defines the critical issues
for this process to be quality, product
technology, requirements instability, and
complexity. The following sections address the
issues of software reuse and product quality, and
how they contnbute to productivity.

3.1. Software Reuse

One of the problems that software engineers
generally face is having to implement programs
and modules that have already been implemented
elsewhere. This may be caused by portability
problems, lack of documentation, or
incompatible interfaces.

Barnes and Bollinger [I 7] indicate that the
overhead of software developments significantly
reduced with the incorporation of effective
software reuse policies. They represent this
overhead in terms of the cost of software
development and specify the financial aspects of
such strategies. Basically by not having to
reinvent the wheel in every project, the software
engineers are freed to pay more attention to the
technical problems that have not been addressed
yet. This by itself produces new challenges to the
engineers and allows him/her to gain new
experience and feel satisfied with the job and
maintain a high morale. It also reduces the need
for redundant activities, hence improving the
engineering productivity and output.

Our survey shows that most software projects do
not have an acceptable software reuse policy in

place. In fact most of the respondents were not
sure how to measure this in their companies and
report it to us. It is our experience that the
engineers are expected to rely on experience,
general knowledge, and in some cases luck in
order to discover the reusable modules.

In many cases it is helpful to examine the
existing software in order to identify and
catalogue the reusable portions as one of the
initial steps towards the development of the
software reuse strategy. Biggerstaff [18] describes
an appropriate tool to that purpose. This tool
interprets the programs at the source code level
and recovers the design and specification of its
modules, and through various steps generates the
corresponding reusable libraries. This tool is
especially useful when attempting to develop
next generation systems from the existing
product

Some Japanese companies have also realized the
importance of software reuse. Akima and Ooi
[19] describe the ambitious joint venture project
called Software Generator and Maintenance Aids
(SIGMA) project. SIGMA is a hardware and
software system which is developed jointly by a
large number of Japanese companies. The final
product will be used as a national archive of
software modules and technical documentations.
Various vendors may subscribe to the system by
paying a specific fee, and develop their products
by using the available facilities. SIGMA
maintains specific policies in order to encourage
and allow the users to contribute to the technical
documentations and the reusable software
libraries. However, this activity adheres to strict
standards that must be followed by all
subscribers.

Generally standards play an important role in the
concept of reusable modules. One major aspect of
these standards deal with interfaces to the
modules. The UNIX device drivers are good
example of reusable modules. Each device driver
regardless of its type and operation provides a
specific set of input and output parameters.
Programmers who need to use such modules
must only learn the required standard and
implement their software accordingly. Also as far
as the device drivers are concerned the higher
level software modules that invoke them are
portable.

Widespread use of reusable software requires that
software organimtions develop and document the
reusable software libraries. It also requires
software engineers to be trained to develop their

3

software in a reusable fashion following strict
standards and do so using existing modules.

3.2. Product Quality

Higher quality of software products indirectly
improves the productivity of software
organizations. This is so because, these
organizations will spend less of their resources
(i.e. engineering time and money) on fixing bugs
and problems that are reported from the field.
Hence being able to concentrate more on the
development of the next generation and new
products.

Hollocker [22] discusses the economic benefits of
producing high quality products. He maintains
that the vendors of high quality products allocate
less capital and resources to fixing bugs that are
discovered by the customers which add up to
substantial savings. In addition higher quality
products gain larger market share and can be sold
at higher prices. This creates more operating
income which is usually used to boost
productivity by purchasing state-of-the-art
equipment, providing more effective technical
training, hiring more experienced engineers, and
maintaining high morale with in the
organization.

On the other hand Juran [20] indicates that
product quality is enhanced as the result of
improved efficiency and the effectiveness of the
product development process. It is therefore safe
to assume that improvements in productivity
enhances the quality of the product, and as
suggested earlier, higher quality of products will
add up to improvements in the productivity of
the software development organizations, thus
creating a circle of success. In other words,
improvements in product quality results in
improvements in engineering productivity, which
in turns results in more improvements in quality,
all adding the profitability of the company.

Over the years, the authors have all witnessed the
gross deficiencies in process of assuring
acceptable quality in the released products, in
different companies in the US. In our experience,
the function of quality assurance (QA) has taken
a back seat to the design and development
process. Usually inexperienced engineers have
been placed in the evaluations and QA teams
with lower status than the design and
development groups. These observations have
been confirmed by our survey. 82% of the
respondents believed that QA is compromised in

their organizations to meet schedules, and 77%
reported that software gets shipped with known
bugs, while only 27% said that QA is integrated
into every stage of software development

Tajima and Matsubara [16] discuss the process of
software development within Hitachi Software
Engineering Company Ltd. This organization has
made significant improvements in the process of
the development of software products. One major
aspect of this process is reliability and QA. At
Hitachi, the QA organization is involved with
every stage of the product development; i.e.
specification, design, implementation, and
testing. The staff are properly trained and the
manager of this organization is given higher
authority than even the company president. In
other words only the QA manager may decide
whether a particular product can be released.

We believe that software development
organizations must interact closely with their QA
counterparts and make sure that products are
properly and completely evaluated. IEEE [21]
proposes standards for the software quality
assurance activities. These standards are the result
of extensive research efforts and many committee
discussions and should be useful for the most
software development projects.

4. The Human Factor

Paulk [4] mentions that the most common
causes for projects not being completed on time
and within cost are behavioral rather than
quantitative. The most common causes are poor
morale, poor human relations, poor labor
productivity, and no commitment by those
involved in the project. He concludes that the
way to reverse the trend of increasing software
development cost is to develop leadership,
planning, and control skills in the software
project managers.

4.1 New Engineers and Morale
Problems

Generally new software engineers are recent
graduates with degrees in Computer Science or
Engineering. Their initial assignments are
generally short and successful. As they complete
these tasks, they build their confidence. However
as they continue to function in the professional
environment, some begin to feel more frustrated
with various aspects of the organization. They
may observe that some of their colleagues

4

display less interest in work, and never spend any
extra time on their work. This is completely the
opposite of what they had become used to during
their college years. The professional environment
is also accompanied with the administrative red
tape [l 2] which adds to the dismay of the
engineers. However, the red tape is mostly
necessary in order to manage the project capital,
salaries, schedules, product releases, and etc.
Engineering students do not worry about this
overhead as much, because usually they are in
charge of their projects, and they are the ones
who monitor and ensure the progress of their
tasks. Of course, they need to prove the
reasonable success of their work to the
professors, but the students are given
most of the control.

Studies by Cook [24] show that graduate students
enter the technical profession with a high degree
of productivity and creativity. This is due to the
fact that they have just been awarded a degree
which is the highlight of their achievements and
they proceed to move into industry and dazzle
everyone with their skills and technical
knowledge. However by about a year and a half
they peak out and their productivity and ci:eativity
will decline to the levels of their initial
employment. The continued decline will
eventually reach the point of crisis [12] and
depletion of productivity. This decline in
creativity and productivity can also be due to out
of-0ffice situations such as financial obligations
and family situations. Some decide to leave the
organization seeking employment elsewhere,
while some decide to live with their frustrations
developing a "just tell me what you want and I'll
do it" attitude which precludes any creative work
on his/her part. Of course, this problem is not
exclusive to the software professionals. Managers
should look for these kinds of personality and
behavior changes and attempt to fix the problem
with counseling. This might be carried out
through a technical individual who is highly
respected by the person in crisis. They should set
up special periodical meetings with all engineers.
In such a meeting the manager should discuss
everything including non-work related issues.
Through such meetings the manager can discover
any problems that the engineer can be assisted
with. Another approach is to assign to each new
engineer a mentor who is a manager or an
engineer with long history with the company.
This person can aid the new person through the
company red tape and other unexpected
situations. A mentor should seek the engineer on
a regular basis and provide assistance as
necessary.

4.2.Technical Education and Training

Software engineering project managers need to
pay close attention to the growth of technical
knowledge of the engineers and scientists in their
organizations. In fact engineering productivity
can be improved by adequate technical training. A
study by Price, Thompson, and Dalton [13]
shows that engineers eventually become
technically obsolete. Shannon [12] describes
technical obsolescence as being the knowledge
that is no longer useful. To· the engineers and
scientists this is the loss of .. technical vitality".
A "technically vital" engineer is always operating
at the edge of the technology, he or she works
very effectively, and is a contributor to the
project. Such engineers need to operate in
"supportive environments", and are highly
motivated and are seekers of opportunities.

In general technical obsolescence is signalled by
lack of or decreased productivity. Engineers that
suffer from this syndrome are incapable of using
modem technologies or information in order to
solve technical problems. And as they become
more obsolete they will be more unfamiliar with
and less suitable to apply the critical techniques
that are required to do the job. This phenomenon
is usually created due to the rapid change in
technologies. Engineers who constantly work on
the same problem and those who are working on
a long term project with minimal contacts with
their base technologies are more likely to become
technically obsolete [14].

One way to enhance technical vitality is through
education and on the job training. The
environment that promotes learning and supports
education is likely to enhance productivity of the
technical personnel [12]. In order to combat
technical obsolescence both the individual
engineer and the acting manager need to set up a
specific strategy which provides opportunities for
technical training and education. However it is
important to distinguish between the need for
training and the need for education. Through
training the engineers acquire the skills necessary
to function within projects and organizations,
while education is a long term prospect through
which people gain broader knowledge related to
their area of expertise. This may be accompanied
by higher status and promotions. Kaufman [15]
states that the majority of engineers feel that
continuing education in modem technology is a
necessary step in keeping up-to-date.

Technical training should be used to familiarize
the engineers with the tools, standards, and

5

methods that are needed to create the product.
Such training is focused on specific issues that
do not deal with general concepts. Companies
that are planning on keeping their engineers for
the long term, use such training to synchronize
their employees with the desired strategies and
objectives. Some Japanese firms provide good
examples of this practice. Japan's software
industry has made great advances and vis a vis its
U.S. competition. Generally, large Japanese
firms which offer lifetime employment, realize
that the knowledge of their employees must be in
tune with their long range plans and objectives.
Denji Tajima and Tomoo Matsubara [16] describe
training employee program established by
Hitachi Software Engineering knowlijlS HSK.
This organization starts the training process at
the entry level by first offering two months of
"off the job" training. This process teaches the
employees about the general business issues as
well as tools, programming languages, and other
technical issues. At the completion of initial
training, each engineer expresses the areas that he
or she wishes to be assigned to. Once the
assignments are complete, they are given "job
sight" training by the senior staff. Entry level
software engineers are viewed by Hitachi as
software trainees for the first six months of their
employment as they learn about their specific
assignments. The entry level training is
completed after one year, "but it is just an
introductory step in series of programs that make
up Japan's lifetime educational system" [16].

Our survey shows that while software engineers
and managers believe that technical training
improves engineering productivity (59%);
training for design and development tools was
available for 46% of the respondents, and training
for coding and documentation standards for only
27% of them.

We believe that software development
organizations must provide opportunities for
their technical personnel in order to keep
themselves up to date. On the job training will
keep the software engineer in tune with the
strategies and the goals of the organization, while
continued education will keep the engineers
abreast of the scientific changes in their technical
field keeping them as strong contributors to their
companies.

4.3 Working From Home

Software engineers generally do their work using
terminals or PCs that are tied into larger

systems. Most of the work involves the use of
word processors, editors, compilers, debuggers,
and revision control systems. In many cases it
helps if the engineers are equipped with PCs or
tenninals and modems at home. This way they
can work off hours when necessary in order to
ensure that schedules are met. Tajima and
Matsubara [16] indicate that the Hitachi Software
Engineering Co. Ltd. is using this scheme in
order to allow female software engineers to work
from home and stay close to their children. They
also specify that this approach is used by many
western software development organizations.

The availability of PC and tenninals at home
also allow the software engineers to use services
such as the Electronic Bulletin board to keep
abreast of the latest discoveries and discussions in
the technical fields of interest Such activities can
take place off hours and will not interfere with
the main work at hand. The ability to
communicate with ones technical peers is an
effective way of avoiding technical obsolescence
and even access solutions to some of the
technical problems at hand. Allen [14] discusses
the importance of technical communications to
the engineers in order to keep up with the
changes in their fields of disciplines. The ability
to interface with media such as the electronic
bulletin board at one's leisure should satisfy this
need and enhance one's productivity at work.

4.4. Job Satisfaction

Our survey indicates that a large majority of
software engineers (82%) feel that job
satisfaction affects productivity positively. The
problem is that only a minority (27%) reported
that their organizations had a formal mechanism
to measure the level of job satisfaction of their
employees. We believe that it is the
responsibility of upper management to institute
mechanisms by which engineers can talk about
the problems they encounter without fear. of
reprisal from anyone. First and second-line
managers should be required to implement these
mechanisms, and report their findings with
strategies of eliminating the most common
problems. Although these problems are
considered human-resources related, they would
directly affect the bottom-line of the companies
by boosting productivity of each employee.

6

S. Analysis of the Survey

We received 22 responses from 12 companies and
3 universities. Out of these, three companies
were from outside the US (Canada, France, and
Holland), as well as one university (Australia).
The respondents had an average of 8.9 years of
experience in design and development of
software, and 1.1 years in software management
(14 of 22 had no management experience). They
have worked for an average of 3 companies in
various sized projects. The following
observations can be made from the tabulated data:

Process:

• 82% said that they had at least at one time
worked in or managed a project that had
shown the symptoms of software crisis, such
as grossly over-budget, of-schedule, poor
product quality, etc.

• While 73% said that there are documents in
their organization which describe the software
development process, only 32% said that
there are mechanisms to check that these
software process standards are adhered to.

• On whether there are formal procedures in
planning, reviewing, and analyzing the
development process, there are variations, but
all of these activities occur in half or less
than half of the organizations in which the
respondents. The weakest areas (all under
30%) appear to be in estimating the size of
the project, gathering statistics on errors, and
analyzing and monitoring planned vs. actual
items:
a. 27% had a process to estimate the size of

the project
b. 41 % had a process to estimate the cost of

the project
c. 36% had a process to estimate staffing

levels
d. 27% gather statistics on design, coding and

testing errors
e. 50% review their design, coding and

testing methods
f. 23% analyze planned vs. actual for items a

e above.
g. 27% monitor and remove deficiencies

found in items a-e above.

estimate size

estimate cost

estimate staff

gather stats

50%

analyze all

above

fix all above

0% 20% 40%

• On whether there are mechanisms to check that
the software process has been adhered to; the
strengths are in the areas of design reviews
and coding and regression testing standards,
and the weaknesses are in the areas of
prototyping designs. The percentages for
mechanisms in place are:
a. 18% to prototype designs and check them

against top-level specification.
b. 55% to conduct design reviews
c. 32% to adhere to design standards
d. 46% to adhere to coding standards
e. 41 % to adhere to testing standards
f. 55% to adhere to regression standards
g. 32% to adhere to software process

standards
h. 36% to insure overall product conforms to

quality assurance samples

60%

prototypes

design
reviews

55%

designstds

codingstds

testing stds

regression
stds

SW process

55%

stds
quality

conformance
--~~~+-~~~+-~~--1

0% 20% 40% 60%

7

Quality Assurance:

• Only 27% said that QA is integrated into every
stage of software development

• While 86% considered QA functions to pose no
burden on software productivity, only 32%
reported that QA is built into the day-to-day
activities of the technical staff.

• Most importantly, fully 77% reported that
software gets shipped (delivered to
customer) with known bugs of some kind (a
few mentioned that it is accompanied with
errata lists). And an even higher 82% believed
that Quality Assurance is compromised in
their organization to meet schedules.

100%

80%

60%

40%

20%

0%

OA integrated OA integrated

in every stage in daily
of development activities

Training:

products are

shipped wtth

bugs

OAia
compromised

• While 59% reported that they thought new
employee technical training improves
engineering productivity, such training was
available for 46% of respondents for design
and development tools, and only 27% for
coding and documentation standards.

• 73% of the respondents said that employees
show an active interest in on-the-job training,
while a lower 50% reported that their
management actively encouraged such
training.

Human Resources:

• While a large majority of 82% believed that
job satisfaction affects productivity
positively, only 27% reported that their

organization had a formal mechanism to
measure job satisfaction of their employees.

100%
82%

80%

60%

40%

20%

0%

job satisfaction mechanism to
affects measure job

productivity satisfaction
positiviely

• 68% of the respondents felt that flexible work
hours affect productivity positively, and 77%
reported that they had that in their
organization (even though some reported that
this was an informal unwritten policy, as
opposed to a formal one).

100%

80%
77%

60%

40%

20%

0%

flex-time affects have flex work
productivity hours

positively

• In estimating the percentage of the time spent
in various activities the average was as
follows:
- 56% on actual work, i.e. design, coding,

testing, management
21 % on work-related technical

communications
- 11 % on work-related non-technical

communications
- 4% on employer-supported technical

training.
- 8% on other activities

8

6. Japanese Software Practices

technical

non.i.chnical
comna.inicdona

The post-war reconstruction of Japan and its
industries has been dubbed an economic miracle
by some people. In less than 50 years, Japan has
gone from a nation in ruins to an industrial
powerhouse. Today, the world's largest banks and
some of the largest and most profitable industrial
companies are based in Japan. Japanese
companies dominate industries such as consumer
electronics and cameras, and are formidable
competitors in the auto and banking industry, to
name a few. This history along with a growing
reputation of Japan's "software factories"
prompted us to take a closer look at the Japanese
software industry to find out if there are any
lessons to be learned by software companies,
especially US companies.

While some believe that the dominant position
of the US in the computer and software industry
is relatively safe, others believe that they are
likely to do the same to the software industry
that they did to the auto industry in the 1980s.
Perry [8] reports that the dominance of the US
software industry is disappearing. This is based
on an MIT report comparing the average US and
Japanese programmer in productivity (41 % fewer
debugged lines of code in the US), and defects per
1000 lines of code (56% fewer defects in Japan).
On the other hand, Humphrey, Kitson and Gale
[9] who have recently done a comparative study
of the state of software practices in the US and
Japan, concluded that the view that the Japanese
software industry is ahead of the US is
unfounded. However, they have also found that in
the area of systems software, the small elite
programming groups in the leading Japanese
computer manufacturers are on par and possibly
ahead of the best US practice. In their view, the
US has a clear worldwide lead in packaged
software (like Microsoft Windows 3.0 or Lotus

123) but that is only because of the weaknesses
of the competitors. They have observed that
Japan is now adopting the new US technology of
software process improvement and are doing so
more rapidly than the US firms. This they
believe will likely expose the US industrial
position. Zelkowitz et. all [I] who have
conducted a study of 13 US and 13 Japanese
companies found the level of technology used by
Japanese companies to be similar to the US
companies. However, tool development and use
appears to be more widespread in Japan. This is
because Japanese companies tend to optimize
resources across the company rather than within a
single project, making the tools a capitalized
investment paid out of company overhead rather
than project funds. They have also concluded that
the Japanese often use techniques developed in
the US or Europe, and they put great emphasis
on practical tools. Other successful techniques
used by the Japanese is that they keep projects
small, and they are better able to relate failures to
their causes through postmortem analysis of error
data.

It must be noted, however, that like any other
industry, the Japanese software industry is not a
monolith. Humphrey, Kitson and Gale [9]
actually state that there really are two Japanese
software industries: one is comprised of a few
large, highly competent software factories, while
the other has nearly 4000 small applications
development groups (with 87% having less than
300 employees). Their data indicates that the
large software factories are equivalent to and
possibly stronger than the best U.S. groups,
while the small ones are below even the lowest
level of general US practice. It is the large
software factories that we decided to focus on.
The following is a summary of four of the
history and characteristics of the software
factories belonging to four large companies
Toshiba, Hitachi, NEC, and Fujitsu. These are
based on the detail study published by
Cusumano[23].

6.1. Toshiba

Software development at Toshiba was largely
localized and non-standardized till the early
1970s. A 1975 market study indicated a huge
increase in software demand which prompted
management to investigate ways to increase
productivity dramatically while simultaneously
improving quality. Toshiba studied Software
Development Corporation's effort as well as its
Japanese competitors and set out to build a

9

Software Workbench (SWB) similar to AT&Ts
Programmer's Workbench (PWB).

At Toshiba the drive to introduce the concept of a
Software Factory came from a rather unusual
source. Toshiba was a major vendor of industrial
control software and the motivation for
establishing software factories came about from
its real-time software division, as opposed to the
basic or application software division .

The major guidelines for the software factory at
Toshiba were:

- standardize the development process
- reuse standardized inputs (code, design,

documentation, testing)
- create standardized, integrated tools
- provide continual training for new hires and

old employees

One of the major themes that Toshiba
emphasized was software production as opposed
to software development, where the term
production implied the reuse of existing code
instead of writing new code. Toshiba had one
clear advantage over many of its competitors in
that most of its software was for Toshiba's own
hardware, so there was a great deal of
homogeneity in the hardware which facilitated
standardizing software to a great extent. But
because Toshiba's major area was real-time
software, the customers were very sensitive to
software reliability. Automation of software
production thus provided Toshiba immediate
benefits in its most critical area i.e. reliability.
At the same time, however, because of the very
nature of real-time software, the benefits of
automation was less obvious to Toshiba's
customers. Software was often bundled in with
the hardware and the customer expected the
system to work by turning a switch and not
doing much more.

One of the critical areas in software management
that Toshiba pioneered and excelled in was the
setting up of a matrix management structure,
delicately balancing vertically linked product
engineering activities with horizontally linked
production engineering activities. As a result of
this organization, Toshiba had no single manager
of its software factory. The more specialized
design and system analysis staff were shared
across products while programmers themselves
were treated as a non-specialized resource. This
facilitated the movement of programmers across
projects as needed.

Software departments at Toshiba produced both
system and application software and most
systems were very large. An average project
involved four or five system analysts, a dozen
system designers and close to a hundred
programmers. To manage such a large project
Toshiba used a life-cycle model not unlike the
one used in the hardware sector. The life-cycle
mcxlel was divided into five distinct phases:

- Requirements Specification and Design Phase
- Software Manufacturing Phase
- Software Testing Phase
- System Installation and Alignment Phase
- Maintenance Phase

Each phase had specific procedures and tools
prescribed. This system worked well for design,
development and testing of application software
which remained closely allied with hardware
design, assembly and testing. According to
Yoshihiro Matsumoto, one of the pioneers of
automation at Toshiba, "Each project ... follows
the same disciplines and management procedures
of the software factory once it becomes a part of
the factory."

Much of Toshiba's initial attempts to measure
software productivity were frustrated due to the
usual problems of software metrics. Many
different languages and different levels of
complexity of the code rendered the "lines of
source code" metric inconsistent. But the goal of
management was to keep the measure simple and
easily understood because of the volume of
software involved. Toshiba developed a
equivalent-assembler source lines (EASL) of code
to measure productivity, by reducing source code
written in different high-level languages to a
common assembly language. This had inherent
difficulties in that code complexity was ignored
and the volume of code generated was heavily tied
to the high-level language to assembly-language
translation tools used. But over time these
aberrations were found to average out Based on
this Toshiba used a productivity measure called
gross production rate (GPR) which was the total
code delivered by the factory. It took into account
new code, reused code and the size of the
executable program delivered. Toshiba also used
this data for measuring other productivity and
management indices.

Through this process Toshiba observed a
dramatic rate of improvement in productivity
initially which then slowed down and finally
plateaued out. But consistently keeping such data
helped Toshiba increase its productivity through
reusability. Reusability doubled nominal

10

productivity levels and improved costs of
overhead and new code production. But it was
also observed that only a high percentage of code
reuse (>80%) actually increased productivity
significantly. Low levels of reuse (<20%)
actually had a negative impact on productivity.

Systematic data collection at Toshiba also helped
them refine their strategy for productivity
improvement

- standardization of inputs through code
registration and reuse

- automation of design and programming
- standardized tool support for all phases
- quality improvement through minimizing

errors in shipped code

The gains in product quality at Toshiba were
dramatic. Defects in software after final testing
per 1000 lines of source code showed a
remarkable improvement. Toshiba achieved this
through a quality control approach that factored
in productivity, costs and reusability. On the
software production area, Toshiba instituted an
eight level review system that monitored the
product through its entire life-cycle. The factory
procedure also defined a long list of quality
factors and individual items for reviewers to
check. This reflected the needs of both the
company and the customer.

Toshiba believed in hiring and training its
programmers. Many of those hired had limited
formal education in computer or software
engineering, to the extent that in 1986 about half
of its programmers had only graduated from high
school. Toshiba then provided them 1 to 1.5
months of training in its standardized procedures
and tools. Over a period of time the training
consisted of 22 required courses and 5 optional
ones. A minimum three year design assignment
was mandatory after the programming phase.
Beyond this the individuals career path was
dictated by their skills and interests. During the
course of training and assignments the
programmers use Toshiba's software workbench
for requirements definition, basic system design,
project control, configuration management,
documentation, testing, quality assurance,
program maintenance, reusability and
prototyping.

Toshiba attained software reusability through
bringing down reusability to manageable levels.
Software was sectioned into three parts for
reusability. The "white box" parts were packages
of design skeletons kept in program libraries.
This provided templates for designing software in

a particular domain, such as nuclear power
plants. The second part consisted of large utilities
that helped control communication, database
management etc. The third part is the "black
box" part which were common program libraries
that could be used across products. Systematic
"repeat maps" were created to help reusability at
different phases of the product life-cycle. Several
organizations with glowing names such as
Software Reusing Parts Steering Committee
were created to encourage and coonlinate reuse. A
Reusing Parts Manufacturing Department and
Parts Center evaluated and certified new parts for
reuse. A five part criteria was used to measure the
various aspects of reusability such as fitness,
quality, clarity, performance, software interface,
human interface, internal configuration,
abstractness and simplicity. The five criteria
were:

- contents had to be easily understandable
- interfaces and requirements to execute the

software had to be clear
- software had to be portable
- software had to be rehostable
- software had to be retrievable in a program

library

Although Toshiba made significant advances
many hurdles remain. Reusability between
organizations is very low (about 10%). Total
reliance on the software workbench limited
flexibility in some occasions and had an adverse
impact on productivity. Moving Toshiba beyond
the current state-of-art is a continuing challenge.

6.2. Hitachi

The formation of Software Factories at Hitachi,
or more precisely "Software Works" in Hitachi
terms, was born out of a shortage of skilled work
force and quality problems with Hitachi software.
The company also decided that the way to
improve the quality and productivity of software
was to centralize the operation at the company
level and make an entity separate from hardware.
As with its other Japanese counterparts Hitachi
started off collecting data, formulating standards,
etc. But there was no clear direction from
management of what a software factory might
look like.

Much of the early software activity in Hitachi
was in supporting software from RCA. But
toward the middle of the 1960s Hitachi started
developing software in-house. By 1968 Hitachi
had developed its own version of the Multics
operating system, a truly modern OS. This and

1 1

many other projects put considerable strain on
Hitachi's scarce software engineering resource.
During this time, view of software changed from
being a service to a being a Hitachi product The
creation of the software factories ran parallel with
the rapid expansion of Hitachi's computer
business. But Hitachi's initial efforts were greatly
frustrated by the poor quality of RCA software
and a lack of programmers. But Hitachi had
already made the determination to move into
systematic software production. By 1969, Hitachi
had developed a matrix organization consisting of
functional groups providing support to project
groups. Three major product areas were identified:
business applications, systems programs and
real-time software. Hitachi set off by collecting
very detailed statistics of programmer habits.
Only an informal division of labor was made
between design engineers and programmers.
Detailed statistics was also collected for each
stage in the development life cycle.

Despite of many similarities between Hitachi and
Software Development Corporation, there were
significant differences. Hitachi kept designers and
programmers in close proximity. Engineering
groups were divided by the industry which they
supported, such as airlines, banking etc. The goal
was to obtain standards in all activities. Hitachi
concentrated on three main areas:

- Work Standardization
- Design Methodology
- Inspection

Work standardization referred to products being
built in similar and consistent ways. This was
formalized by management to include every step,
design, production and testing. Structured
programming was widely encouraged and a
Structured Programming Methods Committee
was formed to oversee its adoption. But the
standards did not come easy and adoption was
even harder. Different standards had to be evolved
for basic systems and application software. A
phased design and development methodology was
adopted which was divided into five stages, each
using automated tools:

- determination of user/product requirements
- determination of external specifications
- determination of internal specifications
- manufacturing (coding)
- testing, debugging and inspection.

Hitachi also adopted a form of inspection similar
to the hardware business. Through extensive data
collection Hitachi had determined such details as
how much time it would take to produce 100
lines of completely debugged code in a certain

language. Also extensive man-power data was
collected to improve quality and productivity.

The problems in process control were the hardest
to quantify. Standard-time estimates accumulated
over years was used as a basis of control. Many
formal methods based on the collected data was
instituted to improve process control. Subsequent
data collected indicated significant gains in
project planning and control due to these formal
processes. Quality control was defined as
preventing defects in the design stage and
meeting performance specifications. Many formal
procedures were defined for defect reduction.
Quality improvement was perhaps the most
important goal at Hitachi when it embarked on
adopting a factory method. Hitachi managers
believed that detecting flaws early in the lifecycle
was a significant cost saving. Some Hitachi
managers saw the essence of the factory approach
as the ability to control the quality. Reusability
of code was not on of the initial goals at Hitachi
but became more important once the initial
development process was in place. This
especially became important for large program
libraries. Training at Hitachi was quite similar to
the other Japanese companies. Programmers of
widely varying skills were hired and
comprehensively trained in Hitachi's
methodology. The most distinctive feature at
Hitachi was the use of its qualification system
and its linkage to production management

Hitachi faced many hurdles in improving and
standardizing its process. Many mistakes were
made and several tasks were grossly
underestimated. But Hitachi's persistence and the
dedication of its managers to collecting detailed
data has meant continual process improvement

(;.3. NEC

Unlike Toshiba and Hitachi, in 1974 NEC
embarked on a mission to transform its software
production process in the entire organization. The
goal was standardization of procedure and tools,
quality improvement, automation and reusability.
In the late 1980s, this process resulted in a
multiprocess and multiproduct factory network
that was a most ambitious management
challenge, unlike any faced by its competitors.
The first separation of software from hardware at
NEC happened in 1974. Early the following
year, several product development and support
strategies were announced. They were:

- to standardize tools and procedure

12

- to train programmers in structured
programming

- to provide formal plans of software process
control (phase plan)

- to create a comprehensive system of quality
assurance

- to create subsidiaries to provide regional
programming services.

Much of this was driven by the observation by
Yukio Mizuno, a key figure in NEC software
development for more than four decades, that
90% of business application software can be
produced through standardization. Only the
remaining l 0% needed creativity. NEC's decision
to train a large number of subsidiaries in the
standard procedures and tools was very significant
and by l 98s of the 18,000 software personnel at
NEC, only 50% were in-house. The rest were
spread out in more than two dozen subsidiaries.
To appreciate the vision at NEC it is illustrative
to see Mizuno's definition of a "software
factory":

"The term "software factory" does
not indicate a physical building. It is
a method of producing software, or
the tools used in this method, for
example a control system. The
software factory refers to the
integration of these types of things.
It must be understood as a concept.
Another point that should be
emphasized is that it is important for
a software factory to be a place
where systems are introduced that
incorporate the experience of people
who have made software in the past
with new methods or particularly
effective techniques. It is an
accumulation of knowledge. Even if
doesn't go as far as a knowledge
database, it should be something
where there is an accumulation of
knowledge. For example, in coding
inspection, a particular group keeps
making mistakes in register
manipulation. Or they forget to
close a table. In a software factory, it
would be important to have a system
for development-process control that,
relying on a history of these
mistakes, would prevent them from
recurring."

The software process control was implemented as
a seven phase plan consisting of planning, basic
design, detailed design, implementation, system

integration, inspection and maintenance. As NEC
made advances in its factory concept and its
development process, the overall emphasis
shifted toward quality control and reusability,
quite akin to the philosophy at Toshiba. NEC
also identified five types of software that needed
to be mastered:

- basic software for host computers
- distributed systems application software
- on-line real-time control software
- industry oriented application software
- built-in microcomputer software

Much of this was achieved at NEC through a
consensus and commitment among managers for
the creation of some sort of a software factory to
rationalize software production.

NEC created a four phase diagram to explain the
evolution of Software Production Systems
(Figure 1). In the early 1970s software started
moving toward more standardization through the
widespread use of high-level languages to
supplement the many system specific languages.
This is followed by the introduction of standard
operating environments, such as UN1X. Many
new control systems, databases and other tools
were introduced in the 1980s. Now the
technology is evolving toward more "intelligence
oriented" programming.

- Ill IV
Figure 1: Evolution of Software Production
Systems. Phase I= source-oriented (batch or large
time-sharing systems); II on-line
conversational mode (UNIX, work stations,
specific techniques); III = integrated
conversational mode (integration of tools,
methods, controls); IV = intelligence-oriented
(applications of artificial intelligence). (Source:
Fujino Kiichi, "Sofutouea seisan gijutsu no
genjo" [The Trends of Software Engineering],
NEC gijutsu 40, 1, 1987, pp. 3, 8.)

In an attempt to further the factory concept, NEC
identified that while producing certain kinds of
software such as to control an answering machine

13

can be easily automated in a factory-style
environment, some other like a major operating
system was a R&D endeavor. Also the
uniqueness of the software development process
needed to be understood from the beginning. The
need to create a "department management"
structure instead of the adhoc per project
management style was identified. Also the need
for an optimal work environment was stressed.
Based on these observations seven basic elements
of a software factory were defined in 1988.

Many projects and programs were initiated over
the last to decades to continually improve the
development process. The Software Strategy
Project (1976-1979) resulted in the introduction
of sets of tools and techniques based on structured
design and programming. The Software Quality
Control Program (1981-) developed a unique
quality control program. It also stressed the
"human-factors" and also addresses training. The
Software Problem Strategy Project (1982-1985)
was a follow-up to the earlier strategy project and
encouraged further standardization in
development, quality control, process control,
etc. It also explored new areas such as
decentralization and asynchronism (different parts
of a program at developed at different times, at
different places and by different people). Many
recommendations were also made. The Software
Factory Design Project (1986-) created
guidelines for designing software factories.

Despite being the leader in revenues earned from
computer sales in Japan, NEC continued to rank
lower customer evaluation for price-performance
ratio, maintenance etc. in comparison to Hitachi
and Fujitsu. But significantly it was ranked at
about the same level as its competitors in
application system engineering, Japanese
language processing etc. NEC was fortunate in
that its managers exhibited a commonality of
views and purpose. They identified that NEC had
a varied range of products and modifications
would have to be made. NEC also encountered
the usual resistance in introducing a new tool or
procedure to employees who were used to doing
things a certain way. But most importantly they
persisted and in the long haul has succeeded in
selling more software for more systems than its
Japanese competitors.

6.4.Fujitsu

At Fujitsu many of the tools, techniques and
organization were similar to the other Japanese
companies, but with some differences. The

differences were in the emphasis and timing.
Fujitsu also did not enter any foreign
collaboration but actively seeked foreign
assistance in software development.

On of the first real challenges that Fujitsu faced
was developing an operating system for its
hardware which was compatible with the IBM
System/360 OS. Until this time Fujitsu had
relied upon developing software adhoc with
highly skilled programmers. Through this
experience Fujitsu gained some insight into the
software development process. In the early
1970s, Fujitsu began promoting measures for
process standardiz.ation and conttol aimed at the
"accumulation and improvement of technology".
It outlined a software productivity improvement
strategy based on:

- the use of high level languages for
programming

- modularization and structured methods for
design and programming

- quantified controls for product inspection
- process reviews to ensure product reliability
- reducing time spent on fixing or altering

programs.

Development organizations were set up for
different areas of software. But much of this
effon was not labeled as a software factory. A
very important characteristic at Fujitsu, in its bid
to integrate product, process and quality was the
gradual introduction of conttols. In the first phase
between 1970-1978, Fujitsu instituted product
and process standards, and formal systems for
inspection and quality control. In the next phase,
structured programming practices were heavily
encouraged. The final phase has been the
widening of the scope of the quality assurance
department to go beyond testing and look at the
entire process.

An important distinction is the view of quality at
Fujitsu. The customers perspective was given
more importance as opposed to concentrating on
issues such as zero defect. Adherence to external
specifications was given the greatest importance.
In 1971, Fujitsu instituted a product-handling
procedure whereby development groups had to
bring source code, manuals and other
documentation for conformance testing. The
increase in size and complexity of projects forced
Fujitsu to pay more attention to project
management as well as process standardization.

Fujitsu followed a standard development life
cycle model: basic design, functional and
structural design, detailed design and coding, unit

14

testing, integration, system testing, inspection,
delivery and maintenance. Many detailed
procedures were in place and refined over time to
improve the overall quality. Improvements were
always made in small, realistic segments. For
instance in the early 1970s, quality was measured
by reliability in component testing, conformance
to documentation and rate of defects. Quality
assurance hence was dependent on individual
programmers. This was incrementally improved
and in 1979 three overall themes were put in
place. Quality assurance through organization,
diffusion of inspection ideas through horizontal
development, and advancement of quality
concepts. Many formal procedures were put in
place to implement these themes.

Much like Hitachi, Fujitsu kept detailed statistics
on programmer habits and developed standard
time charts for individual tasks. These were used
for implementing project management and
control. Another area that Fujitsu worked
extensively was on standardizing and automating
testing. Initial test suites were generated
automatically based on external specifications.
To de-skill the process of testing, Fujitsu also
compiled extensive lists of test factors and created
tables of orthogonal arrays to indicate the
probable cause of most problems. Subsequent
data collected by Fujitsu indicated that this level
of automation detected 5 to 10 times the number
of errors as compared to conventional testing.

Fujitsu's decision to create a factory style
software facility was driven by the need to
efficiently develop software that was only
nominally different from some existing software.
Fujitsu believed that centralization would
improve the transfer of knowledge across
projects. Fujitsu began cautiously by setting up
a "conversion" facility that only modified
existing code. This was later expanded into a
development facility and still later into a full
design and development center. Thus
incrementally Fujitsu attained its goal.

Training at Fujitsu was not unlike other Japanese
companies. New hires were a mixture of high
school and college graduates, some with training
in computer science and engineering. Fujitsu
then offered full time training in its process and
standards. Programmers were elevated to
designers after some years of experience and based
on their skill.

Some of the unique features of Fujitsu's
implementation of the software factory were:

- early integration of software process and
control

- centralized laboratory for development and
training

- gradual expansion of factories design
responsibilities and capabilities

- extensive use of computer-aided tools
- attention to the customers' perspective of

quality

Fujitsu also offered a healthy mixture of strategic
direction and adaptability in the areas of
technology and organization. So in spite of a late
entry into the software business compared to its
Japanese counterparts, Fujitsu management
allocated the resources and attention to software
necessary to become and maintain a position as
Japan's leading manufacturer of computer
hardware.

6.5.Beyond Factories Toward Consortia

Through· all the lessons learned out of creating
software factories at various companies, the
Japanese software industry, with assistance from
the Ministry of International Trade and Industry
(MITI), launched numerous consortia at various
times starting in the mid 1960s. The results from
such cooperation have been highly variable, but
invariably in every case each consortium led to
the fonnation of yet another cooperative effort to
advance the spread of modern software
engineering techniques. The latest in the effort
has been the formation of SIGMA [19], Software
Industrialized Generator and Maintenance Aids,
and the Fifth Generation Computer Project. The
goal of SIGMA is to disseminate the concepts of
standardization and reuse, and promote the
efficient use of a scarce resource.

The most significant consortium effort in the US
is the Microelectronics and Computer
Corporation (MCC). MCC's efforts have been
focused on requirements specification. MCC's
problems have been the lack of total
commitment from shareholder companies, and
the difficulty of technology transfer. The
Department of Defense sponsored projects have
been more successful and have led to the
development of the Multics operating system and
the Ada programming language.

7.Lessons from the Japanese Experience

The first requirement to move a company toward
standardized software development is the heretical

15

conviction on the part of the management that
software is manageable. That software can be
controlled and organized through formal structure
and does not have to be a "service" aimed at
selling hardware. It is also essential to move
away from the irrelevant need to label a
organization and to concentrate on improving the
process, organization and control. Also a
strategic view of software development is
essential because initial results are not likely to
be encouraging and most gains of standardization
and control are likely to be long-term.

Standardization and control are, however, likely
to be counter-productive in introducing new
technologies and in executing projects with
special needs. So a flexible approach is essential.
Also important is that new hires be trained in the
tools and standards of the organization. This will
make them more productive sooner, and reduces
their frustration.

One might disagree with the use of the term
"factory" but semantics are not the point here. A
software factory is not meant to be a rigid
monolith but a flexible, innovative organization
that provides the necessary structure to efficiently
use a scarce resource and accommodate changing
technologies. The following section is a short
description of one such factory in the US.

8. The Original Software Factory: SDC

The most serious experiment in the US toward
the. creation of a software factory was the
formation of the Software Development
Corporation (SOC) in the mid 1970s. Initially
setup as a non-profit organization to research
tools, methods and organizational concepts, SOC
nevertheless succeeded in achieving noticeable
improvements in about 10 projects and identified
many areas of improvement in the production of
software. SOC identified that in the long run
standardizing methodology was a bigger win than
standardizing tools. But SOC could not continue
to function as a non-profit organization and
attempted to a profit-and-loss body, competing
aggressively for contracts. It is this painful
transition and other personality conflicts that
eventually spelled its doom and SOC was
disbanded 3 years after its creation.

But SOC made significant advances which served
as a initial model for the Japanese Software
Factories at Hitachi, Fujitsu, NEC and Toshiba.
SDC set out to tackle five areas of weakness in
software development

- lack of discipline and repeatability
- lack of development visibility
- changing perfonnance requirements
- lack of design and verification tools
- lack of software reusability.

To address these problems SDC set out to
develop "an integrated set of tools that supports
the concepts of structured programming, top
down program development, and program
development libraries, and incorporates
hierarchically structured program modules as the
basic unit of production". They hoped to achieve
software reusability through "the careful system
component structuring, their specific relationship
with performance requirements, and the improved
documentation inherent in software developed in
the factory. By establishing a factory they hoped
to achieve "a disciplined, repeatable process
terminating in specified results within budgeted
costs and on a predictable schedule... SDC
concentrated on three areas of improvement

- standards and procedures
- organization
- tools.

In the area of standards and procedures, SDC
setup a .. time-phased software development life
cycle" consisting of six stages: planning,
requirements/performance, design, development,
test/acceptance, and operation/maintenance. This
served as the standard life-cycle model at all
Japanese software factories. SDC developed a
very simple organization structure consisting of
systems (design) engineers, production (coding)
engineers and evaluation (testing) engineers.
SDC also developed many toolsets automating
the various stages of development

At the time SDC was disbanded there were some
significant achievements and some failings. SDC
did develop a methodology to make the software
process repeatable but did not collect statistics on
its own efforts. SDC did elevate the visibility of
software and helped it migrate from a service to a
product in the management perception. However,
SDC did not focus on software reusability from
the beginning, though it was one of the areas
mentioned in its original statement of purpose.
SDC did develop tools for automation but failed
to create general purpose development tools. For
its many failings, SDC did provide the impetus
that led to the creation of software factories
around the world

16

9. Conclusions

Our survey shows that attention to quality is
minimal in most software organizations, even
though software engineers feel that the additional
work of quality assurance would pose no burden
on their productivity. A large majority report that
software products get shipped with known bugs
and that quality assurance is compromised to
meet project schedules. In the human resources
area, flexible time is considered to affect
productivity positively by software professionals
and is fairly widely available. However, the issue
of job satisfaction is not being addressed by the
management even though software professionals
consider it to be a positive contributor to
productivity.

To improve software productivity we focus on
two areas: process and human factors. To
improve process research shows that software
reuse, and attention to quality are major
contributors. In the human factors area, literature
points to ways of improving productivity by
combating morale problems, emphasizing
technical training, and adding flexibility to work
hours (such as allowing workers to work from
home).

Case studies have shown that Japanese
companies starting from diverse backgrounds and
needs have evolved procedures and tools to
standardize the software management process.
Training was effectively used to enhance
productivity. The increase in productivity in
major Japanese software companies have not
been achieved in the short term. What is needed
is a strategic view toward improving efficiency
and reusability in the long term. The fierce
commitment from management to persist and
provide resources, both financial and human is
required to achieve these goals.

References:

1. V. Zelkowitz, R. T. Yeh, R. G. Hamlet, J. D.
Gannon, V. R. Basili, "Software
Engineering Practices in the US and Japan,"
IEEE Computer, June 1984, p. 57-66.

2. P. Naur and B. Randell, eds., Software
Engineering, NA TO Scientific Affairs
Division, Brussels, 1969.

3. B. E. Pulk, "Improving Software Project
Management", Journal of Systems and

Software, Vol. 13, No. 3, Nov 1990 pp.
231-235.

4. H. Kenner, Project Management, Van
Nosttand Reinhold, New York, 1989.

5. T. Demarco, Controlling Software Projects,
Management Measurement & Estimates,
Y ourdon Press Computing Series, Prentice
Hall, Inc., 1982.

6. S. Henry, D. Kafma, "Software Mettics Based
on Infonnation Flow", IEEE Transactions
on Software Engineering, Sep. 1981.

7. W. S. Humphrey, Managing the Software
Process, Addison-Wesley Publishing
Company, 1990.

8. W. E. Perry, "TQM can save US software
development", Government Computer News,
Vol. 10 No. 7, Apr. 1, 1991.

9. W. S. Humphrey, D. H. Kitson, J. Gale," A
comparison of US and Japanese Software
Process Maturity", IEEE, 1991.

10. F. Brooks: ''Why Is The Software Late?"
11. B. W. Boehm: "Software and Its Impact: A

Quantitative Assessment", Datamation,
1973.

12. Robert E. Shannon, Engineering
Management\, 1980 pp. 122 - 123

13. D. R. Price, P. H. Thompson, and G. W.
Dalton, "A Longitudinal Study of Technical
Obsolescence", Research Management,
November 1975, pp. 22 - 28

14. Thomas J. Allen, "Organizational Structure,
Information Technology, and R&D
Productivity", IEEE Transactions on
Engineering Management, Vol. EM 33,
No. 4 November 1986 pp. 212 - 217

15. H. G. Kaufman, "Continuing Education for
Up-Dating Technical People", Research
Management, July 1975 pp. 20 - 23

16. Denji Tajima and Tomoo Matsubara, "Inside
the Japanese Software Industry", IEEE
Computer, March 1984

17. Bruce H. Barnes and Terry B. Bollinger,
"Maldng Reuse Cost-Effective", IEEE
Software, January 1991, pp. 13 - 24

18. Ted J. Biggerstaff, "Design Recovery for
Maintenance and Reuse", IEEE Computer,
July 1989 pp. 36 - 49

19. Noboru Akima and Fusatake Ooi,
"Industrializing Software Development: A
Japanese Approach", IEEE Software, March
1989 pp. 13 - 21

20. J.M. Juran, "Quality Control Handbook",
3rd edition Section 16, McGraw - Hills,
1974

21. IEEE Standard 730 - 1981, "A Standard for
Software Quality Assurance Plans"

22. Charles P. Hollocker, "Finding the Cost of
Software Quality", IEEE Transactions on

17

Engineering Management, Vol. EM - 33,
No. 4 November 1986, pp. 223 - 228

23. Michael A. Cusumano, Japan's Software
Factories, 1991, Oxford University Press

24. C. F. Cook, "The Trouble Life of the Young
Ph.D. in an industrial Laboratory", Research
Management, May 1975, pp. 28-31

Appendix:

Survey Questions and Tabulated Results

Your Name (optional):
Company (optional):

Section 1 : BackgroWld

1. How many years of software experience do you have?
- in design/development
- in management

2. How many companies have you worked for?

3. What is your area of expertise?

4. What is your current area of software development?
(eg. business, embedded, systems, tools etc.)

5. How would you classify the size of your software project? Why?
(eg. large, medium, small)

6. How would you describe your software organization?
(pure project, function based etc.)

7. Have you worked in or managed a project that has shown symptoms
of software crisis, such as grossly over-budget, off schedule,
poor quality product etc.

8. Describe the level of software reuse in your organization
(High(> 80%), Medium (60-80%), Low (40-60%), Negligible(< 40%))

9. Can you give a specific example of software reuse?

Section 2 : Software Engineering Process

1. Are there formal procedures to:

a. estimate software size for each project
b. estimate software development costs
c. estimate staffing levels
d. gather statistics on design, coding and testing errors
e. review design, coding and testing methods

f. analyse planned vs. actual for items in a thro e
g. monitor removal of deficiencies found in items a thro e

2. Are there documents to describe:

a. the software development process in the organiz.ation
b. the standard tools and techniques
c. management review of the software process

3. Are there mechanisms to check that:

a. designs are prototyped and checked against top-level specification
b. design reviews are conducted
c. design standards are adhered to
d. coding standards are adhered to
e. testing standards are adhered to
f. regression tests are performed
g. software process standards are adhered to
h. overall product confonns to quality assurance sample

4. Are there procedures in place to:

a. interact with customers to assess their changing needs
b. keep management updated on individual aspects of the development
c. introduce engineering changes in design

Section 3 : Quality Assurance (QA)

1. Is QA integrated into every stage of software development? Describe.

2. Is QA the task of a functional group in you organiz.ation?

3. Is QA detrimental to software productivity, in your opinion?

4. Is QA built into the day to day activities of the technical staff?

5. Is a formal method used to classify bugs?

6. Does software get shipped with known bugs?

7. Is the design/development engineer also responsible for fixing bugs?

8. Is QA compromised to meet schedules?

Section 4 : Training

1. Does your company provide new employees technical training in
the following areas (describe)? Hnot, why?
- design and development tools
- coding and documentation standards

2. Does new employee technical training improve engineering productivity,
in your opinion?

3. Does your company provide on the job technical training?
- Yes, required
- Yes, but not required
-No

a. the software development process in the organfaation
b. the standan1 tools and techniques
c. management review of the software process

3. Are there mechanisms to check that:

a. designs are prototyped and checked against top-level specification
b. design reviews are conducted
c. design st.andards are adhered to
d. coding standards are adhered to
e. testing st.andards are adhered to
f. regression tests are performed
g. software process standards are adhered to
h. overall product confonns to quality assurance sample

4. Are there procedures in place to:

a. interact with customers to assess their changing needs
b. keep management updated on individual aspects of the development
c. introduce engineering changes in design

Section 3 : Quality Assurance (QA)

1. Is QA integrated into every stage of software development? Describe.

2. Is QA the task of a functional group in you organization?

3. Is QA detrimental to software productivity, in your opinion?

4. Is QA built into the day to day activities of the technical staff?

5. Is a formal method used to classify bugs?

6. Does software get shipped with known bugs?

7. Is the design/development engineer also responsible for fixing bugs?

8. Is QA compromised to meet schedules?

Section 4 : Training

1. Does your company provide new employees technical training in
the following areas (describe)? If not, why?
- design and development tools
- coding and documentation standards

2. Does new employee technical training improve engineering productivity,
in your opinion?

3. Does your company provide on the job technical training?
- Yes, required
- Yes. but not required
-No

Suriley Results

A B c D E F G H I
1 Tabulated Data From the survey:
2 1= Yes, O=NO
3 Numberg of survev nuestlons· 1.1. 1 1.1.2 1.2 1.5 1.6 1. 7 1.8
4 Comna-": Survev No· Yrs dsnn exnr Yrs mnt exor no comnanies nroi size lnrn f11nction svm SW crisi· ~W reuse
5 Pvramid 1 15 3 8 sm lo rict 1 med
6 Pvramid 2 3 0 1 med lo rict 1 neQlobl
7 Pvramid 3 6 0 2 sm ?? 1 med
8 Pvramid 4 14 0 5 med IP rict 1 neal
9 Tek 5 6 0 2 med !proj 1 neal

1 0 Motorola 6 8 1 6 sm oroi o med
1 1 Scada Dept 7 11 0 3 sm loroi 1 med
1 2 French Como 8 5 3 2 sm 1oroi 1 nea
1 3 anonvmous 9 3 0 1 med loroi 1 low
1 4 anonvmous 10 14 3 2sm loroi 1 neal
1 5 Rutaers Un iv 11 3 0 1 large ?? 1 low
1 6 Data Sciences (Holland) 12 8 2 2 Ira loroi o low
1 7 Bellcore 13 11 8 6 ?? ?? 1 neal
1 8 Ptld oubl util 14 1 3 0 2 lrg func 1 negl
1 9 Mentor Grohcs 15 9 0 3 Ira ?? 1 neal
20 Wollonaona Univ 1 6 1 6 0 2 med func 1 med
21 MacDonald Dettwiler <Canad 17 8 1 3 med loroi o low
22 Intel 18 12 3 4 med loroi 1 med
23 Intel 19 8 0 3 med ?? 1 med
24 Intel 20 14 0 3 med loroi 1 low
25 Verd ix 21 5 0 2 med func ?? med
26 Intel 22 4 0 2 med func 1 low
27
28
29 Averaaes: 8.9 1.1 3.0 81.Bo/o
30
31
32 NOTE: ?? denotes answers that were unclear or left blank bv the respondent.

Page 1

Sur\iey Results

J K L M N 0 p Q R s
1
2
3 2.1.a 2.1.b 2.1.c 2.1.d 2.1.e 2.1. f 2.1.Q 2.2.a 2.2.b 2.2.c
4 e"ltmt SW .,;7, octmt SW rn ·Mt mt stff Iv aather stats rvw m$!thods l~nalvse a·e mote a-51 dcmt P.W orr"l dcmt strl tis mnt rvw nrcs
5 0 0 0 0 0 0 0 0 0 0
6 0 0 1 0 1 0 0 1 1 0
7 0 0 0 0 1 0 0 1 1 1
8 1 1 1 0 0 0 0 0 0 0
9 0 0 0 0 1 ?? ?? 1 0 0
10 0 0 0 0 0 0 0 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1
1 2 0 1 0 0 1 1 1 1 1 1
13 0 0 0 0 0 0 0 1 0 0
14 0 0 0 0 0 0?? 0 0 0
1 5 0 1 1 1 1 ?? ?? 1 0 1
1 6 1 1 0 1 1 1 1 1 1 ??
17 1 1 1 1 1 1 1 1 1 1
18 0 1 1 0 1 0 0 1 1 0
19 0 0 0 0 0 0 0 1 1 ??
20 0 0 0 0 0 0 0 1 1 0
21 1 1 1 1 1 1 1 1 0 1
22 0 0 0 0 0 0 0 0 1 0
23 0 0 0 0 0 0 0 1 1 ???
24 1 1 1 1 1 ?? 1 1 1 0
25 0 0 0 0 0 0 0 0 1 1
26 0 0 0 0 0 0 0 1 0 0
27
28
29 27% 41% 36% 27% 50% 23% 27% 72.7% 63.6% 31.8%
30
31
32

Page 2

Survey Results

AD AE AF AG AH Al AJ AK AL AM

1
2
3 2.4.c 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 4.1.1
4 lorcd r=r.n rill. intnr SW nA taC!lt of an IOA detrimenl OA d::iv-to-da formal hi,,.. rl SW l':hnrl w b111 lrlev Ann ,.ioh1 '~ lll!. r.omormsrl new em tr ti
5 0 0 1 a a 0 ?? 1 ?? 0
6 1 1 1 a 0 1 1 0 1 0
7 1 1 0 0 0 1 1 1 1 0
8 1 0 1 a 0 1 1 1 1 0
9 0 1 1 a 0 1 1 1 1 0

10 0 0 1 a 0 0 a 1 1 1
1 1 1 1 1 0 1 1 1 1 1 1
1 2 0 1 0 0 ?? 1 0 1 0 1
1 3 ?? 0 0 1 0 0 1 1 1 1
1 4 0 0 0 0 0 0 1 1 1 0
15 1 0 1 1 1 1 0 1 1 1
1 6 1 1 1 0 1 1 1 1 0 1
17 0 0 0 0 1 0 1 1 1 1
1 8 0 0 0 0 ?? 0 1 1 1 0
1 9 1 0 1 a 1 0 1 1 1 1
20 0 0 0 0 0 0 0 1 0 1
21 1 0 1 a 1 1 1 ??? 1 1
22 0 0 1 0 0 1 1 1 1 0
23 0 0 0 0 0 0 1 1 1 ??
24 0 0 1 1 1 1 1 1 1 0
25 1 0 1 0 0 1 1 1 1 0
26 0 0 0 0 0 1 1 1 1 0
27
28
29 40.9% 27.3% 59.1% 13.6% 31.8% 59.1% 77.3% 90.9% 81.8% 45.5%
30
31
32

Page 4

Survey Results

AN AO AP AQ AR AS AT AU AV AW
1 1 =positively 1 =positively

2 O=neqativelv O=negatively
3 4.1.2 4.2 4.3 4.4 4.5 5.1 5.2 5.3
4 ,nAw Am tr ct tr imnrv nrrlr. on-inn trna mat encra trn Arnn intr~trl sr.rtv ;::iff nrdc :t flex lime fix effl"t ordc
5 0 1 0 0 0 1 (hiqh) 1 1
6 0 ?? 1 1 1 1 1 0
7 0 1 0 1 1 0 1 0
8 0 1 1 1 1 1 (high) 1 1
9 0 ?? 1 0 1 1 (high) 1 ? ?

1 0 1 1 1 1 1 ?? 1 ? ?
1 1 0 ?? 0 0 1 ? ? 1 1
1 2 0 ?? 1 (req) ?? 0 ?? 0 ??
1 3 1 ?? 0 0 0 ?? 1 1
1 4 0 1 0 0 0 1 1 1
1 5 1 1 1 0 1 ?? 0 1
1 6 1 1 1 (not reo) 1 1 ?? 1 1
1 7 1 ?? 1 0 ?? ?? 1 1
1 8 0 1 ? ? 0 1 ?? 0 1
1 9 0 1 1 1 1 1 1 1
20 1 1 1 1 1 0 1 1
21 0 0 1 1 1 ?? 1 1
22 0 1 0 0 1 ? 1 1
23 ?? ?? 1 (not req) 1 1 1 1 ? ?
24 0 1 1 (not req) 0 1 1 0 0
25 0 ?? 0 1 0 0 1 1
26 0 1 ? ? 1 1 1 0 1
27
28
29 27.3% 59.1% 59.1% 50.0% 72.7% 40.9% 77.3% 68.2%
30
31
32

Page 5

Survey Results

AX AY AZ BA BB BC BO BE BF 00

1 1 mpositively
2 O=neoativelv
3 5.4 5.5 5.6.1 5.6.2 5.6.3 5.6.4 5.6.5
4 inh !'lt!'lfotn m ioh stsf ef or nl'"'tn tech com inon-tl),..h t"t"1m ::il'"'tlll:il work emolvr tech iother ::il'"'tivih

5 0 1 20% 5% 70% O"/o 5"/o 100%
6 1 1 15% 5"/o 70% 5"/o 5% 100%
7 0 1 30% 20% 20% 10% 20% 100%
8 (sliohtM 0 1 (high) 40% O"/o 50% O"/o 10% 100%
9 0 ?? 13% 5"/o 80% O"/o 2'/o 100%

10 1 ?? 10% 100/o 70% 5"/o 5"/o 100%
1 1 0 1 30% 200/o 48% O"lo 2'/o 100%
12 0 ?? 15% 200/o 55% 10% O"k 100%
13 0 1 20% 5"/o 60% 5"/o 100/o 100%
14 0 1 (hiah) 20% O"lo 60% O"/o 200/o 100%
1 5 1 1 20% 100/o 50% 5"k 15% 100%
1 6 1 1 (high) 15% 15% 60% 5"/o 5"/o 100%
17 1 ?? 400/o 100/o 30% 20% O"lo 100%
1 8 0 1 ?? ?? ?? ?? ??
19 0 1 20% 5"/o 70% O"/o 5"/o 100%
20 0 1 5% 25% 50% O"lo 200/o 100%
21 1 1 20% 20o/o 500/o 5"/o 5"/o 100%
22 lhiah) 0 1 (high) 10% 5"/o 75% O"lo 100/o 100%
23 0 1 200/o 100/o 600/o O"lo 100/o 100%
24 0 1 (hioh) 300/o 100/o 40% 10% 100/o 100%
25 0 1 300/o 5"/o 60% O"/o 5"/o 100%
26 0 1 15% 200/o 55% 5"/o 5"/o 100%
27
28
29 27.3% 81.8% 20.9% 10.7% 56.3% 4.00/o 8.00/o 100%
30
31
32

Page 6

