
 

  ETM OFFICE USE ONLY 
Report No.: See Above 
Type: Student Project 
Note:  This project is in the filing cabinet in the ETM department office. 

 
 
 
 
 
 
 
 
 
 
 
Title:     SNAP - System Networked Advisor Program - A Diagnostics 
Advisor for System-Level Troubleshooting 
 
Course:  
Year:     1990 
Author(s): A. Doumani, R. Martin, R. Ritter and K. Spurgin 
 
Report No: P90007 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Abstract: System Networked Advisor Program, SNAP, is a system level 
troubleshooting Expert System, currently under development. We propose to 
develop a prototype portion of SNAP to be used in field services on 
troubleshooting the disk subsystem. This subsystem provides a reasonable 
"stepping stone" for introducing expert system technology into production. 
The knowledge base will contain structural and functional representations of 
the computer configuration. SNAP provides the troubleshooter to replace the 
appropriate faculty past, or suggests alternate configurations to further 
narrow the number of fault candidates. 
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ABSTRACT 

System Networked Advisor Program, SNAP, is a system level troubleshooting Expert 
System, currently under development at Sequent Computer Systems, Inc. This paper 
proposes to develop a prototype portion of SNAP to advise field service on 
troubleshooting the disk subsystem. 

Disk subsystem troubleshooting is selected due to its moderate complexity, and 
varied 
levels of troubleshooting expertise. This subsystem provides a reasonable 'stepping 
stone' for introducing expert system technology into production at Sequent. 
Estimated break even on investment is within a year of introduction. The expected 
cost savings exceed maintenance costs. Intangible benefits are also considered 

Similar cases are reviewed to help reduce project risk and to provide specification 
suggestions. A two stage inference engine is proposed for the reasoning process. 
The Knowledge Base, KB, will contain structural and functional representations of 
the computer configuration. Matrices and rules guide the reasoning process to 
determine the fault candidates. SNAP advises the troubleshooter to replace the 
appropriate faulty part, or suggests alternate configurations to further narrow the 
number of fault candidates. 
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Disk troubleshooting: Why prototype the KB system using this problem? 

Disks are among the highest failing subsystems, making the problem relevant to 
troubleshooters and having potential for fast pay back on development costs. 
Experts accomplish disk troubleshooting today at various efficiencies. Users 
welcome and support infrastructure and tool develo~ments. The scope of the 
problem domain is narrow without being a trivial or 'toy" issue. More importantly, 
the tools needed for a disk failure expert system would create a strong foundation for 
extension into other failure categories. 

The task is tolerant of imperfection. Advising actions to take to verify failure root 
cause lends itself to "good enough" solution. Success is measurable, such as decrease 
in costs per service incident, or percentage of returned "no trouble found" parts. 

Business growth rate drives productivity and training needs. Field populations have 
doubled in less than two years, with several groups such as hotline experts and 
systems technicians having to nearly match growth rate due to lack of productivity 
tools. A successful SNAP will allow existing experts to handle higher product 
populations, and enhance training of those new troubleshooters hired. 

The KB ontological approach to defining knowledge structure has potential to pay 
back through analysis alone. The structured approach of reviewing cryptic test and 
diagnostics messages is expected to enable improvements in the tests and messages 
themselves, even if the KB system were to remain unimplemented. 

COST/BENEFIT JUSTIFICATION 

Costs to Conduct Feasibility, Implement, and Maintain SNAP 

Available resources (sunk costs): 
Sequent has numerous data bases and resources which are being or could be applied 
to this problem. Troubleshooting technicians have access on the Sequent host 
network to quality and configuration data stored in relational (Oracle) data bases. 
Many have X-Window graphics terminals, DOS or SUN work stations, and those in 
the field have modern access with terminals or portable PCs. The variety of expert 
system shells available for UNIX and ported to Sequent is growing, including the 
KES shell which has an Oracle interface. 

Feasibility: 
This stage consists of tool specification, including cross-training KB experts and 
domain experts, narrowing focusing on problem domain, and prototype a problem 
solution with enough hardware and software to demonstrate feasibility. Consultants 
should be leveraged as necessary to achieve early prototype win and to support 
development of internal specialists attempting to build their first expert system. 

lOk KB and data spec review 
20k Problem analysis 
30k Prototype 

'$60k Total, Feasibility stage 
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SNAP initial production system: 
This stage expands SNAP into field service and production use with added hardware 
and tool purchases, KB integration with production systems, and application and 
robustness upgrade such as enlarging domain scope to other key problems and to 
develop user training and on-line help documentation. 

20k 
50k 
60k 

$I30k 

Hardware/tools purchases 
KB production integration 
Application development 

Total, SNAP introduction 

Expansion and maintenance: 
Software tools in the expert system are typically sixty to ninety percent conventional 
code [13]. Lack of ongoing maintenance and development to capture and code user 
requests are sited as primary reasons for degradation and eventual abandonment of 
KB systems. [17] Conventional test software is estimated to take about 50-60% of 
initial cost to enhance and maintain with growth and changes in product mix and user 
requirements. These were our basis for estimating annual maintenance costs. 
Beyond a "critical mass" full-time specialist [17], other funds to expand system could 
be allocated with discrete justification. 

$100k Annual expansion and maintenance 

Benefits 

Assumptions used to evaluate potential SNAP benefits are summarized below. Pay 
back analysis is based on production release of only the KB (disk advisor) prototype. 

Field disk population 
DiskMTBF 
Expected disk warrantee/service incidents 
Current cost per incident 

6000 disk drives 
60,000 hours 
750/year 
$1000 

Annualized field troubleshooting costs $750k 

In-house system test failures/week 3 
Troubleshooting labor cost/incident $200 
System cycle time loss/incident 1 day 
Annualized inventory costs (i=20%) $32k 

Annualized in-house troubleshooting costs $62k 

Total annual disk troubleshooting costs $Sill 
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Break Even/ROI Analysis 

Troubleshooting savings when reported in the KB literature were typically 
breakthrough rather than minor m nature, with efficiency improvements of 2, 5 and 
10 times [19} [12] [11]. More often the strategic wins of the expert system are 
described, how it enabled functions or quality levels previously unobtainable. Table 
1 below provides break even estimates given the disk troubleshooting costs above 
and a set of "reasonable" improvement factors. An example of a troubleshooting 
efficiency improvement of 10% (factor = 1.lx) would pay back with a break even of 
19 months. The table deals with pay back on prototype and introduction costs of 
about $180k, and does not take into account either the benefits or costs of expanding 
the KB system into other troubleshooting areas. 

Annualized value, $8121c failure cost basis (1990 volune> 

llJllrovement factor 

Annualized savings 

Estimated break even 
(for the disk expert) 

1.1x 

81.21c 

19mo 

1.2x 

162k 

1'2mo 

Table 1: Break Even Analysis 

Other Potential Benefits and Opportunities: 

2x 

406k 

5Aio 

Other benefits have been suggested in both the literature and in the problem 
investigation. Some involve tangible costs which have not been calculated, while 
others are intangibles such as customer goodwill and employee development and 
satisfaction. A few of these potential benefits are listed below: 

- Reduce customer down time. 
- Improve troubleshooting and training tools for OEMs and novice users. 
- Improve product design b~ improving both internal and remote diagnostics. 
- Reduce shotgunning and 1 no trouble found" returned components. 
- Reduce system test cycle time (customer lead time) and variability. 
- Improve process for building/maintaining system configuration files. 
- Enhance technician skills at all levels 

SIMILAR CASES 

Reviewing reference cases was done to reduce risk of SNAP project failure. The 
strategy was to categorize or "type" the SNAP project, and then do a select literature 
search for similar KB implementations. General project management guidelines for 
introducing KB systems were found in Niwa[l 7], Liu[ 13], and Freiling [9]. 

In the project management category, Liu[13] summarizes key ingredients for KB 
success as training, end-user involvement, and management commitment. His 
editing of the CASA/SME round-table discussion covers selection criteria, key 
project I? embers, and j?stification, all ar~as c~vered in gr.eat~r depth b)'. Niwa[ 17] 
and Freilmg[91. These issues are abbreviated mto checklists m Appendix C. Liu[13] 
also describes 'the makings of a production-quality system". Distmctions between 
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prototype and production quality systems are well summarized, and offer guidance to 
the SNAP team about managing KB reliability and interfacing to existing systems. 

Knowledge Based qand expert systems have leveraged the fields of knowledge 
engineering and cognitive science. KB applications are an attempt to apply artificial 
intelligence and cognitive psychology to a great number of tasks. These expert 
systems perform tasks which can be described to two major groups: Analytic and 
Synthetic. Each of these groups encompass system characteristics[9]. These are: 

Analytic: 
Synthetic: 

interpret, diagnose, monitor, predict 
repair, control, plan, design 

SNAP has characteristics of both the analytic and synthetic expert systems. The key 
objectives of SNAP are to interpret error messages, and diagnose the faulty disk or 
disk control unit given error messages and configuration input. These are its Analytic 
functions. The second function of SNAP is to suggest repair actions to either correct 
or further troubleshoot the problem. These specific functions categorize SNAP as a 
maintenance expert system. 

Maintenance applications have limited publication in relation to theoretical AI and 
Expert System research. Between 5% and 10% of the hundreds of KB articles listed 
in the Applied Science and Technology Index over the past three years are 
maintenance applications, with a small portion of that involving troubleshooting 
(remainder are primarily logistics related). Table 2 summarizes the quantity and 
categories of articles in the Applied Science and Technology Index. 

Subject Year 
1.87 1 88 1 89 

Artificial Intelligence 76 47 31 
Expert Systems 128 72 91 
Maintenance Expert Systems 22 12 
Knowledge Representation 22 23 28 

Total articles: 226 164 162 

Table 2: Articles published in 
Applied Science and Technology Index 

One source, a presentation from IEEE [11], summarizes pros and cons of today's 
expert systems. Table three reflects a few of these generalizations. 

PRO 
~ide variety of applications 
Increase problem solving capability by -10x 
COITITlOn pay back -1,000,000 
Excellent ROI on small systems 

CON 
Broad knowledge systems are few 
Many systems fall into disuse 
Difficult and tedious to program 
long question and answer sessions 
High maintenance factor 

Table 3. The PRO and CON of Expert Systems 

The case most similar to the SNAP proposal was found to be a system implemented 
by Lockheed and described by Laffey, et Al [12]. The Lockheed Expert System, LES, 
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is a framework for building expert systems, similar to Emycin. LES was applied to a 
large signaling network (3000 printed circuit boards, 1000 cables), comparable to and 
larger than the multi-component configurations of the Sequent computer systems. 

Lockheed applied many of the published seneral techniques [91[171 for developing 
successful expert systems which suggest wmning strategies for SNAP. These were: 

- The use of existing tools to manage costs and allow quick development 
-Graphics including system layout and schematics in the user interface, 
- The use of second level (hidden until called for) explanations for 

its reasoning and answering of questions. 
- Limiting the number of tedious question-and-answer sessions 

One aspect of LES appearing especially applicable to SNAP is the use of" ... a 
structural description of the device in its trouble shooting, as well as allowing the 
knowledge engineer to explicitly control the reasoning process through WHEN 
rules." [12][5][6]. These are similar to the reasoning processes proposed below. 

The results of LES are very encouraging. LES was reported to have: 
- reduced time spent on troubleshooting by a factor of 5, 
- correctly diagnosed 41 of 43 real failures seen within the first year. 

LES is an example of an expert system successfully implemented. Further 
information on LES could be useful in developing the fault diagnosis tool for Sequent 
computers. 

KB MODELING 

This section suggests a model for implementing SNAP's inference engine. The 
knowledge for this SNAP prototype was derived directly from the operatin~ 
principles of the disk subsystem rather than from a domain expert. The objective is 
to meet the needs of the specific problem, while creating an expandable inference 
capability for other subsystem domains. 

A complete description of the disk subsystem is beyond the scope of this paper, and 
assumptions to simplify the model described below may need adjustment upon 
implementation. Appendix A shows system and disk subsystem reference 
illustrations. The following brief subsystem description is intended to provide a basis 
for understanding the matrix inference approach proposed. 

Disk Subsystem Description 

The disk subsystem for Sequent computers is organized around a disk controTier card 
called the Dual Channel Disk Controller. A system can have up to seven DCC's. 
Each DCC supports up to 8 disk drives. The dual channel design allows independent 
data transfer on two channels. The data is routed through up to two multiplexers, 
each serving up to four d. rives. The first multiplexor (referred to as "MUX O" by the 
device programmers) is connected to the DCC by a SIX meter cable. The second 
multiplexor (MUX 1) is connected to the first by a 3-inch cable. 

The dual channel architecture allows the system to optimize throughput. The disks 
on each channel (up to four) share common data paths to the DCC. Figure N is an 
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example of a fully configured DCC. 

mux port 
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Figure 1: Fully-Configured Disk Subsystem 

Program access to a disk is done through a device driver. The driver co-ordinates 
requests from various processors, drives the DCC and handles completion codes and 
error indications. Error handling usually returns an error code to the calling routine 
and may send an error message to the operator console. Error messages may have 
the following format: 

zd%d%c: Error ( specific error message); cmd Ox%x at (%d, %d, %d) 

where "zd%d%c" defines the controller (zd), the driver (%d), and the _partition (%c). 
cmd Ox%x is the DCC command active when the error occurred, and ( %d, %d, %d) 
is the drive cylinder, track and sector where the error occurred. 

Assumptions 

- Disk Access: The user can and will access each and all disks in a troubleshooting 
session. This could mean simply reading a directory from each disk. 

- Exclude cables in the basic model: An analysis of the types of debug strategies 
used showed that few error indications point directly to a cable. Our approach is to 
consider the cables connecting the drive to the multiplexor to be part of the drive. 
The 3-inch cable connecting the second multiplexor to the first multiplexor is 
considered to be part of the second multiplexor. The 6 meter cable between the first 
multiplexor and the DCC is considered to be part of the first multiplexor. After a 
component is isolated as faulty, the connecting cable can be verified or replaced and 
the component reexamined. This reduces the complexity of the debug process and 
the time required to locate the fault. 

- Eliminate trivial: Some error messages relate directly to the DCC indicating 
memory or microcode problems. Messages which directly identify a DCC problem 
represent a trivial case and are ignored by this model of the KB system. 

9 



SNAP: Doumani, Manin, Ritter, Spurgin 

Basic Knowledge Components 

The system console error message is t?e basic indication ~f trouble ~n the system. 
We have included a complete set of disk error messages m Appendix B. In general 
the messages either diagnose problems in the DCC or assume the disks are 
malfunctioning. In practice, the multiplexor boards and interconnecting cables may 
also be faulty. System trouble shooters rely on interpreting not only an error 
message, but a sequence of error messages to verify problems in common data path 
elements. The basic trouble-shooting strategies are not complicated. Chasing the 
correct strategy given different user configurations is what distinguishes the expert 
from the novice troubleshooter. 

Initial interviews with the service engineers revealed that they used the sequence of 
error messages as a key to developing ideas about faulty components. For example, 
using a system like that in Figure 1, error messages from Drives 0 and 1 might 
indicate a muxO, while a session of error messages from Drives 0, 1,2,and 3 would lead 
to suspicion of a faulty DCC. 

The second major knowledge component is a description of the component 
configuration. We identify 8 positions corresponding to the possible locations of a 
disk in a fully loaded system to easier describe system configurations. Each position 
may contain a drive or be empty. 

The final knowledge component is the system model. As descnbed in the 
assumptions, the model eliminates cables. This is accomplished by modelling the 
MUX path connecting the channel to the disk drive as a separate component 
from the data channel, and call this path the mux "port". A port includes all circuitry 
and cables dedicated to a particular drive on the mux. MuxO is the mux physically 
closest to the DCC, and Muxl is the second or farthest mux. Data passes through 
the channel path in MuxO before reaching Muxl. Treating the parts of the mux 
separately simplifies the rule structure. The Mux would be replaced (after cable is 
verified) if either its data channel or one of its ports port is bad. Historical failure 
rate data could be part of the system model improving terminal candidate selection. 

The model of the subsystem consists of from 1 to 8 drives, one or two muxes, either 4 
or 8 mux ports, one DCC, and 2 data channels running through each mux. 

ISOLATING FAUL1Y COMPONENTS 

Overview 

Our goal is to develop a system which will analyze a sequence of error messages 
within the context of a given model and identify a faulty component. If insufficient 
data is available, the system will use the model to develop hypo. theses about the 
potential faulty components. It will then either indicate the faulty FRU (in trivial 
cases) or suggest efficient ways to eliminate suspect parts, such as reconfigure the 
cables or sub-system. 

Isolating a faulty component when not trivial is an iteration process. Given a specific 
configuration and set of error messages, our inference engine should identify the 
strategy to measure values, replace, or rearrange components to eliminate suspects. 
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The KB system employs a two stage process for refining the list of potential failure 
suspects until a single likely candidate.is indicated for replacement. During each 
iteration of the system, the first stage utilizes the error messages and a framework of 
subsystem configuration to deduce the set of possible faulty components. A list of 
suspect components is the output of stage one. 

Where the output lists more than one suspect component, another error message is 
typically required to further troubleshoot. The KB second stage provides a set of 
rules to recommend component reconfiguration prior to executing test instructions 
to create and log the next error message. The configuration that exists on receipt of 
the next error message is the basis for configuration knowledge of the next KB 
iteration, whether or not the site specialist configures as recommended. 

Deducing Faulty Components 

The KB system takes data in the form of sequences or error messages and deduces a 
set of possible components that might have failed. Interview with service engineers 
yielded rules of the form: 

"IF the system has configuration X AND drive Y fails 
THEN EITHER drive Y is bad 
OR mux Z is bad 
OR channel W of the DCC is bad". 

While it is possible to develop a traditional knowledge base in the IF ... THEN form, 
the rules would grow unmanageably large when expanded to deal with all possible 
system configurations .. We propose a logically egmvalent representation using a logic 
matrix which accommodates multiple configuratmns without the combinatorial 
penalties. Similar work has been done by Jau et al. [10]. 

For each position where a disk may be placed, there exists a data path back to the 
DCC. We represent this path in a matrix like table 4: 

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MPS M1A M1B M2A M2B DCCA DCCB 
PO 100000001000 1 0 
P1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 
P2 0 0 1 0 0 0 0 0 1 0 0 0 1 0 
P3 0 0 0 1 0 0 0 0 0 1 0 0 0 1 
P4 0 0 0 0 1 0 0 0 1 0 1 0 1 0 
P5 000001000101 0 1 
P6 000000101010 1 0 
P7 0 0 0 0 0 0 0 1 0 1 0 1 0 1 

A configuration is determined by associatin~ a set of drives with a set of positions. 
This mapping is kept in a system configuratmn table which can be displayed by the 
operator. When an error message is received, the Of>erator is notified and asked to 
run the system. When the system is executed, all drives are accessed. The result is a 
set of error messages from the various partitions. For each error message we identify 
the drive associated with the partition. From the system configuration table we 
identify the position of each drive. Using the matrix from table 4, we can identify a 
set of vectors which represent possible faulty components. 
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In a similar manner, any drives which did not produce error messages can be mapped 
to positions and thus to vectors which describe components which must have worked. 

If pi is the set of components associated with position i and di is drive ~ then we 
define: 

F=P .union. D Where: 
pi is an element of P if a drive position Pi failed and 
di is an element of D if an error message was received from drive di. 

Likewise, we define: 

W= P{prime} .union. D{prime} Where: 
pi is an element of P{prime} if no error message from a drive at position pi and 
di is an element of D{prime} if no error message was received from drive di. 

Then define: 

S= FandnotW 

That is S is the set of components which did not appear in a set of working 
components and did appear in a set of failed components. 

Since the system was involved in response to an error message S can not equal the 
Null set. If S contains one element, it is identified as the failed component. If S 
contains multiple elements, the operator is asked to identify the known $OOd 
components. If multiple elements still exist, after this step, the next step is to suggest 
new configurations. 

For example, suppose we had a configuration like Figure 2 (below). 

Assume error messages are received from dl and d7. 

Using the configuration table and the matrix from table 4: 

pl= {O 1000000010001} 

p7 = {O 0000001010101} 

F = {O 1000001010101} 

Similarly: 

pO = {1000000010001 O} 

p3 = { 0 0 0 1 0 0 0 0 0 1 0 0 0 1} 

W= {100100001100 11} 

So: 

S = {O 10 0 00010001 0 O} 
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This vector implies that thef.roblem is either mux part 1, port 7, drive 1, drive 7, 
or channel B of multiplexer . A normal tendency m this case might have been to 
suspect DCC channel B or MuxO since they are common. > 

mux port 
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Figure 2: Partially configured subsystem 

If the method produces multiple candidates, SNAP will suggest a new configuration 
be used to isolate failure candidates, or most probable candidate if reconfiguration 
will not produce more information. This would for example require the 
service technician or systems administrator on site to switch cables, connecting 
drives to another Mux port or DCC channel. When the above method is repeated 
with the new configuration, the set of components which must have worked is 
combined with the set of components that must have worked in previous passes 
before subtracting from the new set of possible faulty components. Very few passes 
would be expected to isolate the faulty component. Using our example, the S vector 
from the previous configuration will be combined with the F and W vectors 
from the next configuration to produce the next S vector. If Sl is the previous S 
vector and S2 is the next S vector, and if F2 and W2 are the F and W vectors from 
the next configuration, then 

S2 = (Sl or F2) and not (Wl or W2) 

Next Configuration Analysis 

Example of a series of rules for creating subsequent configuration: 

IF there are candidate drives 
AND 
the number of good drives is at least equal to the number of candidate drives 

THEN replace each candidate drive with a good drive. 

IF there are good drives 
AND 
there are more candidate drives than good drives 

THEN 
{ 

IF the number of candidate channels with at ]east one candidate drive is 
more than or equal to the number of good drives 
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THEN replace all good drives with candidate drives such that each 
candidate drive is on a different candidate channel. 

IF there are less candidate channels with at least one candidate drive than 
there are good drives 

THEN select one candidate drive from each candidate channel and replace it 
with a good drive 

AND 
replace each remaining good drive with a yet unmoved candidate 
dnve, arbitrarily 

IF the remaining candidate drives (not replaced with good drives) are less 
than or equal to the number of non-candidate ports 

THEN move all remaining candidate drives into non-candidate ports 

IF the remaining candidate drives (not replaced with good drives) are 
more than the non-candidate ports 

THEN move a candidate drive into each non-candidate port arbitrarily, 
leaving any remaining candidate drives unmoved. 

IF there are candidate drives 
AND 
no good drives 

THEN 
{ 

} 

IF there are at least as many non-candidate ports as there are candidate 
drives 

THEN move all candidate drives into non-candidate ports 

IF there are candidate ports 
AND 
there are more non-candidate drives than candidate ports 

THEN move a candidate drive into each non-candidate port, arbitrarily 

IF there are no candidate drives 
THEN 
{ 

} 

IF there are candidate channels with one candidate port and one non
candidate port 
AND 
there are at least as many good drives as there are candidate channels 
with one can_didate port and one non-candidate port 

THEN move a goodarive into the non-candidate port of each such channel 

IF there are less good drives than there candidate channels with one 
candidate port and one non-candidate port 

THEN move each of the good drives into the non-candidate port on a 
candidate channel 

Following are the rules for terminal cases at which the iteration through the system 
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will stop. Also included is the recommended user action when each of these terminal 
cases is arrived at. 

IF no candidate components are left 
THEN the tests terminated successfully 

IF a candidate drive is attached to a good port 
THENthe drive is bad. Replace it. 

IF all components in the system are candidates 
THEN no further isolation is possible, so: 

IF there is only one MUX in the system 
THEN replace the MUX 

IF there are 2 MUXes in the system 
THEN replace the DCC 

IF a good drive is attached to a candidate port on a good channel 
THEN the port is bad. Replace the MUX 

IF a channel is the only candidate along the path between a good drive and the 
DCC (i.e. channel is on the second MUX and all other components along 
path are known good) 

THEN the channel is bad. Replace the MUX. 

Sample Session 

This section consists of an example interactive troubleshooting session. "System" 
represents messages from the Al system while "User" represents responses supplied 
by the session troubleshooter in the following dialogue. Parenthesized statements 
are included for clarification of this example only, and are not part of the dialo~. 
Example of session initialization is a customer ca11 to field service hotline. Typically a 
modem line is set up for remote acquisition of error messages, system configuration, 
and to run diagnostics. 

System> Welcome to the Disk Dri~e Troubleshooting Aide. 
Please~ in your answers following the "User" prompt. You may type "Configuration" or 
"Explain at any time. "Configuration will display to you the current Disk Drive Subsystem 
conl:i~uration, and "Explain" will describe to you the reasoning which went into the latest 
decision made by the 'troubleshooting Aide. 

This is your current Disk Drive Subsystem configuration: 
(on X-terminals an illustrat1on would appear similar to figure 1, or thlrd page in Appendix A) 
You have a single MUX with drives in positions 0, 1and2. 
Would you-like to proceed with the troubleshooting? 

User> Yes. 

(System runs tests on all disks and executes the first stage of inference) 

System> Candidate components are: 

4 TheDCC ~ 
Disk in position 0 
Disk in position 2 

3 TheMux 

nter the number(s) corresponding to any of the components above which you know to be 
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good, or 0, if none. 

User> 0 

(System runs second stage of inference) 

System> To continue re.configure your Disk Drive Subsystem by doing one of the following: 

~
Replace Disk in position 0 with Disk in position 1. (graphics showing disk cable reroute) 
Replace Disk in position 2 with Disk in position 1. 
en done, run the remote diagnosis •configuration• test (if connection is established), or 

enter the number corresponding to the configuration you have selected? 

User> 1 

(System updates its configuration table, reruns tests on all disks and executes the first 
stage of inference) 

System> Candidate components are: 

The DCC ~ 
Disk in position 2 
TheMux 

nter the number(s) corresponding to any of the components above which you know to be 
good, or 0, if none. 

User> Explain 

System> After replacing the Disk in position 0 with the Disk in position 1 and rerunning the 
tests, error messages from the Disk in position 0 disappeared. Conclusion: Disk 0 is good and 
should therefore be removed from the list of candidate components. If you also replaced any of the 
other subsystem parts with known good parts from spares or another working subsystem, you may 
eliminate those failure candidates. 

Candidate components are: 

3 TheDCC ~ 
Disk in position 2 

2 TheMux 

nter the number(s) corresponding to any of the components above which you know to be 
good, or 0, if none. 

User> 0 

(System runs second stage of inference) 

System> To continue reconfigure your Disk Drive Subsystem by doing one of the following: 

[

Replace Disk in position 2 with Disk in position 0. 
2 Replace Disk in position 2 with Disk in position 1. 

en done, enter the number corresponding to the configuration you have selected? 

User> 1 

(System updates its configuration table, reruns tests on all disks and executes the first 
stage of inference) 

System> Candidate components are: 
1) TheMux 
2) TheDCC 

No further isolation is possible. 
Enter the number(s) corresponding to any of the components above which you know to be 
good, or 0, if none. 

User> 0 

(System identifies a terminal condition) 
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System> No further isolation is possible. We suggest that you replace the Mux with a known 
good one from spares depot << name and phone for nearest spare Mux, from Service DB». 

Any further questions? 

User> Explain 

System> After replacing the Disk in position 2 with the Disk in position 0 and rerl.rYling the 
tests, error messages from the Disk in position 2 disappeared. Conclusion: Disk 2 is good and 
should be removed from the list of candidate c~ts. It is not possible to further 
isolate among the remaining c~ts. Applying the terminal condition rules resulted in 
suggesting that you replace the Mux. Given your configuration and known failure rates the Mux is a 
1110re probable candidate for failure than the DCC. 

Any further questions? 

User> No 

System> Thank you. 

CONCLUSIONS AND RECOMMENDATIONS 

We have identified disk subsystem troubleshooting as a problem suitable for 
prototyping an expert system at Sequent. The prototype would show reasonably 
good pay back if introduced in a small production system, with break even expected 
within a year. 

Integration into production should leverage existing resources such as remote 
diagnostics, data bases, and technical illustrations from service manuals. Due to the 
percentage of code required for these standard interface software components, using 
AI tools that are UNIX-based and include X-window graphics and Oracle interfaces 
are highly recommended even for the prototype. 

A portion of SN AP appears to lend itself well to a combination of rule-based and 
model-based reasoning. Because of the model simplicity and interactive means of 
building the configuration matrix around a subsystem rather than the entire 
computer system, some ·of the traditional deficiencies of shallow reasoning KB 
systems may be avoided. SNAP team focus should be on meeting user requirements 
which include interfacing with their existing tools like data bases. Careful attention 
to interfaces and modularity will enable SNAP to take advantage of other non
model-based features. Other problems may be better handled by frames (like LES 
[12]), or even independent or loosely coupled inference engines. 
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