

 ETM OFFICE USE ONLY
Report No.: See Above
Type: Student Project
Note: This project is in the filing cabinet in the ETM department office.

Title: SNAP - System Networked Advisor Program - A Diagnostics
Advisor for System-Level Troubleshooting

Course:
Year: 1990
Author(s): A. Doumani, R. Martin, R. Ritter and K. Spurgin

Report No: P90007

Abstract: System Networked Advisor Program, SNAP, is a system level
troubleshooting Expert System, currently under development. We propose to
develop a prototype portion of SNAP to be used in field services on
troubleshooting the disk subsystem. This subsystem provides a reasonable
"stepping stone" for introducing expert system technology into production.
The knowledge base will contain structural and functional representations of
the computer configuration. SNAP provides the troubleshooter to replace the
appropriate faculty past, or suggests alternate configurations to further
narrow the number of fault candidates.

SNAP - 'SYSTEM NETWORKED ADVISOR
PROGRAM! - A DIAGNOSIS ADVISOR FOR

SYSTEM: - LEVEL TROUBLESHOOTING

A. Dou~ani, B. Martin, R. Ritter,
and K. Spurgin

EMP - P9007

-1
I

SNAP

EMGT510K
Freiling and Niwa
Spring 1990

Project Team:
Alex Doumani
Bob Martin
Russ Ritter
Kerry Spurgin

System Networked Advisor Program -

A diagnostics advisor for system-level troubleshooting

SNAP: Doumani, Martin, Riller, Spurgin

ABSTRACT

System Networked Advisor Program, SNAP, is a system level troubleshooting Expert
System, currently under development at Sequent Computer Systems, Inc. This paper
proposes to develop a prototype portion of SNAP to advise field service on
troubleshooting the disk subsystem.

Disk subsystem troubleshooting is selected due to its moderate complexity, and
varied
levels of troubleshooting expertise. This subsystem provides a reasonable 'stepping
stone' for introducing expert system technology into production at Sequent.
Estimated break even on investment is within a year of introduction. The expected
cost savings exceed maintenance costs. Intangible benefits are also considered

Similar cases are reviewed to help reduce project risk and to provide specification
suggestions. A two stage inference engine is proposed for the reasoning process.
The Knowledge Base, KB, will contain structural and functional representations of
the computer configuration. Matrices and rules guide the reasoning process to
determine the fault candidates. SNAP advises the troubleshooter to replace the
appropriate faulty part, or suggests alternate configurations to further narrow the
number of fault candidates.

2

SNAP: Doumani, Martin, Ritter, Spurgin

Disk troubleshooting: Why prototype the KB system using this problem?

Disks are among the highest failing subsystems, making the problem relevant to
troubleshooters and having potential for fast pay back on development costs.
Experts accomplish disk troubleshooting today at various efficiencies. Users
welcome and support infrastructure and tool develo~ments. The scope of the
problem domain is narrow without being a trivial or 'toy" issue. More importantly,
the tools needed for a disk failure expert system would create a strong foundation for
extension into other failure categories.

The task is tolerant of imperfection. Advising actions to take to verify failure root
cause lends itself to "good enough" solution. Success is measurable, such as decrease
in costs per service incident, or percentage of returned "no trouble found" parts.

Business growth rate drives productivity and training needs. Field populations have
doubled in less than two years, with several groups such as hotline experts and
systems technicians having to nearly match growth rate due to lack of productivity
tools. A successful SNAP will allow existing experts to handle higher product
populations, and enhance training of those new troubleshooters hired.

The KB ontological approach to defining knowledge structure has potential to pay
back through analysis alone. The structured approach of reviewing cryptic test and
diagnostics messages is expected to enable improvements in the tests and messages
themselves, even if the KB system were to remain unimplemented.

COST/BENEFIT JUSTIFICATION

Costs to Conduct Feasibility, Implement, and Maintain SNAP

Available resources (sunk costs):
Sequent has numerous data bases and resources which are being or could be applied
to this problem. Troubleshooting technicians have access on the Sequent host
network to quality and configuration data stored in relational (Oracle) data bases.
Many have X-Window graphics terminals, DOS or SUN work stations, and those in
the field have modern access with terminals or portable PCs. The variety of expert
system shells available for UNIX and ported to Sequent is growing, including the
KES shell which has an Oracle interface.

Feasibility:
This stage consists of tool specification, including cross-training KB experts and
domain experts, narrowing focusing on problem domain, and prototype a problem
solution with enough hardware and software to demonstrate feasibility. Consultants
should be leveraged as necessary to achieve early prototype win and to support
development of internal specialists attempting to build their first expert system.

lOk KB and data spec review
20k Problem analysis
30k Prototype

'$60k Total, Feasibility stage

4

SNAP: Doumani, Martin, Ritter, Spurgin

SNAP initial production system:
This stage expands SNAP into field service and production use with added hardware
and tool purchases, KB integration with production systems, and application and
robustness upgrade such as enlarging domain scope to other key problems and to
develop user training and on-line help documentation.

20k
50k
60k

$I30k

Hardware/tools purchases
KB production integration
Application development

Total, SNAP introduction

Expansion and maintenance:
Software tools in the expert system are typically sixty to ninety percent conventional
code [13]. Lack of ongoing maintenance and development to capture and code user
requests are sited as primary reasons for degradation and eventual abandonment of
KB systems. [17] Conventional test software is estimated to take about 50-60% of
initial cost to enhance and maintain with growth and changes in product mix and user
requirements. These were our basis for estimating annual maintenance costs.
Beyond a "critical mass" full-time specialist [17], other funds to expand system could
be allocated with discrete justification.

$100k Annual expansion and maintenance

Benefits

Assumptions used to evaluate potential SNAP benefits are summarized below. Pay
back analysis is based on production release of only the KB (disk advisor) prototype.

Field disk population
DiskMTBF
Expected disk warrantee/service incidents
Current cost per incident

6000 disk drives
60,000 hours
750/year
$1000

Annualized field troubleshooting costs $750k

In-house system test failures/week 3
Troubleshooting labor cost/incident $200
System cycle time loss/incident 1 day
Annualized inventory costs (i=20%) $32k

Annualized in-house troubleshooting costs $62k

Total annual disk troubleshooting costs $Sill

5

SNAP: Doumani, Martin, Ritter, Spurgin

Break Even/ROI Analysis

Troubleshooting savings when reported in the KB literature were typically
breakthrough rather than minor m nature, with efficiency improvements of 2, 5 and
10 times [19} [12] [11]. More often the strategic wins of the expert system are
described, how it enabled functions or quality levels previously unobtainable. Table
1 below provides break even estimates given the disk troubleshooting costs above
and a set of "reasonable" improvement factors. An example of a troubleshooting
efficiency improvement of 10% (factor = 1.lx) would pay back with a break even of
19 months. The table deals with pay back on prototype and introduction costs of
about $180k, and does not take into account either the benefits or costs of expanding
the KB system into other troubleshooting areas.

Annualized value, $8121c failure cost basis (1990 volune>

llJllrovement factor

Annualized savings

Estimated break even
(for the disk expert)

1.1x

81.21c

19mo

1.2x

162k

1'2mo

Table 1: Break Even Analysis

Other Potential Benefits and Opportunities:

2x

406k

5Aio

Other benefits have been suggested in both the literature and in the problem
investigation. Some involve tangible costs which have not been calculated, while
others are intangibles such as customer goodwill and employee development and
satisfaction. A few of these potential benefits are listed below:

- Reduce customer down time.
- Improve troubleshooting and training tools for OEMs and novice users.
- Improve product design b~ improving both internal and remote diagnostics.
- Reduce shotgunning and 1 no trouble found" returned components.
- Reduce system test cycle time (customer lead time) and variability.
- Improve process for building/maintaining system configuration files.
- Enhance technician skills at all levels

SIMILAR CASES

Reviewing reference cases was done to reduce risk of SNAP project failure. The
strategy was to categorize or "type" the SNAP project, and then do a select literature
search for similar KB implementations. General project management guidelines for
introducing KB systems were found in Niwa[l 7], Liu[13], and Freiling [9].

In the project management category, Liu[13] summarizes key ingredients for KB
success as training, end-user involvement, and management commitment. His
editing of the CASA/SME round-table discussion covers selection criteria, key
project I? embers, and j?stification, all ar~as c~vered in gr.eat~r depth b)'. Niwa[17]
and Freilmg[91. These issues are abbreviated mto checklists m Appendix C. Liu[13]
also describes 'the makings of a production-quality system". Distmctions between

6

SNAP: Doumani, Martin, Ritter, Spurgin

prototype and production quality systems are well summarized, and offer guidance to
the SNAP team about managing KB reliability and interfacing to existing systems.

Knowledge Based qand expert systems have leveraged the fields of knowledge
engineering and cognitive science. KB applications are an attempt to apply artificial
intelligence and cognitive psychology to a great number of tasks. These expert
systems perform tasks which can be described to two major groups: Analytic and
Synthetic. Each of these groups encompass system characteristics[9]. These are:

Analytic:
Synthetic:

interpret, diagnose, monitor, predict
repair, control, plan, design

SNAP has characteristics of both the analytic and synthetic expert systems. The key
objectives of SNAP are to interpret error messages, and diagnose the faulty disk or
disk control unit given error messages and configuration input. These are its Analytic
functions. The second function of SNAP is to suggest repair actions to either correct
or further troubleshoot the problem. These specific functions categorize SNAP as a
maintenance expert system.

Maintenance applications have limited publication in relation to theoretical AI and
Expert System research. Between 5% and 10% of the hundreds of KB articles listed
in the Applied Science and Technology Index over the past three years are
maintenance applications, with a small portion of that involving troubleshooting
(remainder are primarily logistics related). Table 2 summarizes the quantity and
categories of articles in the Applied Science and Technology Index.

Subject Year
1.87 1 88 1 89

Artificial Intelligence 76 47 31
Expert Systems 128 72 91
Maintenance Expert Systems 22 12
Knowledge Representation 22 23 28

Total articles: 226 164 162

Table 2: Articles published in
Applied Science and Technology Index

One source, a presentation from IEEE [11], summarizes pros and cons of today's
expert systems. Table three reflects a few of these generalizations.

PRO
~ide variety of applications
Increase problem solving capability by -10x
COITITlOn pay back -1,000,000
Excellent ROI on small systems

CON
Broad knowledge systems are few
Many systems fall into disuse
Difficult and tedious to program
long question and answer sessions
High maintenance factor

Table 3. The PRO and CON of Expert Systems

The case most similar to the SNAP proposal was found to be a system implemented
by Lockheed and described by Laffey, et Al [12]. The Lockheed Expert System, LES,

7

SNAP: Doumani, Martin, Ritter, Spurgin

is a framework for building expert systems, similar to Emycin. LES was applied to a
large signaling network (3000 printed circuit boards, 1000 cables), comparable to and
larger than the multi-component configurations of the Sequent computer systems.

Lockheed applied many of the published seneral techniques [91[171 for developing
successful expert systems which suggest wmning strategies for SNAP. These were:

- The use of existing tools to manage costs and allow quick development
-Graphics including system layout and schematics in the user interface,
- The use of second level (hidden until called for) explanations for

its reasoning and answering of questions.
- Limiting the number of tedious question-and-answer sessions

One aspect of LES appearing especially applicable to SNAP is the use of" ... a
structural description of the device in its trouble shooting, as well as allowing the
knowledge engineer to explicitly control the reasoning process through WHEN
rules." [12][5][6]. These are similar to the reasoning processes proposed below.

The results of LES are very encouraging. LES was reported to have:
- reduced time spent on troubleshooting by a factor of 5,
- correctly diagnosed 41 of 43 real failures seen within the first year.

LES is an example of an expert system successfully implemented. Further
information on LES could be useful in developing the fault diagnosis tool for Sequent
computers.

KB MODELING

This section suggests a model for implementing SNAP's inference engine. The
knowledge for this SNAP prototype was derived directly from the operatin~
principles of the disk subsystem rather than from a domain expert. The objective is
to meet the needs of the specific problem, while creating an expandable inference
capability for other subsystem domains.

A complete description of the disk subsystem is beyond the scope of this paper, and
assumptions to simplify the model described below may need adjustment upon
implementation. Appendix A shows system and disk subsystem reference
illustrations. The following brief subsystem description is intended to provide a basis
for understanding the matrix inference approach proposed.

Disk Subsystem Description

The disk subsystem for Sequent computers is organized around a disk controTier card
called the Dual Channel Disk Controller. A system can have up to seven DCC's.
Each DCC supports up to 8 disk drives. The dual channel design allows independent
data transfer on two channels. The data is routed through up to two multiplexers,
each serving up to four d. rives. The first multiplexor (referred to as "MUX O" by the
device programmers) is connected to the DCC by a SIX meter cable. The second
multiplexor (MUX 1) is connected to the first by a 3-inch cable.

The dual channel architecture allows the system to optimize throughput. The disks
on each channel (up to four) share common data paths to the DCC. Figure N is an

8

SNAP: Douman.i, Martin, Ritter, Spurgin

example of a fully configured DCC.

mux port

r
....-- ------- '
I I
I ,--;---+--... I

Channel A : Mux 1 Mux O : Dual-Channel
............ ~. • .L •• -.-•• -. -•• -'. -.• -+---t-_· --. --.. --. -.. "--. ..L • • -. +-....... ~ .-. ..;...-f Disk

Channel B : 1 : Controller
I L,..-.+----1--' I I I ~---~,I

'- ----- - _, t

S tem Bus

-,
I
I
I
I
1
I
I
I
I
I
I
l
I
I

I
I
I
L __ J

System Cord Coge

Figure 1: Fully-Configured Disk Subsystem

Program access to a disk is done through a device driver. The driver co-ordinates
requests from various processors, drives the DCC and handles completion codes and
error indications. Error handling usually returns an error code to the calling routine
and may send an error message to the operator console. Error messages may have
the following format:

zd%d%c: Error (specific error message); cmd Ox%x at (%d, %d, %d)

where "zd%d%c" defines the controller (zd), the driver (%d), and the _partition (%c).
cmd Ox%x is the DCC command active when the error occurred, and (%d, %d, %d)
is the drive cylinder, track and sector where the error occurred.

Assumptions

- Disk Access: The user can and will access each and all disks in a troubleshooting
session. This could mean simply reading a directory from each disk.

- Exclude cables in the basic model: An analysis of the types of debug strategies
used showed that few error indications point directly to a cable. Our approach is to
consider the cables connecting the drive to the multiplexor to be part of the drive.
The 3-inch cable connecting the second multiplexor to the first multiplexor is
considered to be part of the second multiplexor. The 6 meter cable between the first
multiplexor and the DCC is considered to be part of the first multiplexor. After a
component is isolated as faulty, the connecting cable can be verified or replaced and
the component reexamined. This reduces the complexity of the debug process and
the time required to locate the fault.

- Eliminate trivial: Some error messages relate directly to the DCC indicating
memory or microcode problems. Messages which directly identify a DCC problem
represent a trivial case and are ignored by this model of the KB system.

9

SNAP: Doumani, Manin, Ritter, Spurgin

Basic Knowledge Components

The system console error message is t?e basic indication ~f trouble ~n the system.
We have included a complete set of disk error messages m Appendix B. In general
the messages either diagnose problems in the DCC or assume the disks are
malfunctioning. In practice, the multiplexor boards and interconnecting cables may
also be faulty. System trouble shooters rely on interpreting not only an error
message, but a sequence of error messages to verify problems in common data path
elements. The basic trouble-shooting strategies are not complicated. Chasing the
correct strategy given different user configurations is what distinguishes the expert
from the novice troubleshooter.

Initial interviews with the service engineers revealed that they used the sequence of
error messages as a key to developing ideas about faulty components. For example,
using a system like that in Figure 1, error messages from Drives 0 and 1 might
indicate a muxO, while a session of error messages from Drives 0, 1,2,and 3 would lead
to suspicion of a faulty DCC.

The second major knowledge component is a description of the component
configuration. We identify 8 positions corresponding to the possible locations of a
disk in a fully loaded system to easier describe system configurations. Each position
may contain a drive or be empty.

The final knowledge component is the system model. As descnbed in the
assumptions, the model eliminates cables. This is accomplished by modelling the
MUX path connecting the channel to the disk drive as a separate component
from the data channel, and call this path the mux "port". A port includes all circuitry
and cables dedicated to a particular drive on the mux. MuxO is the mux physically
closest to the DCC, and Muxl is the second or farthest mux. Data passes through
the channel path in MuxO before reaching Muxl. Treating the parts of the mux
separately simplifies the rule structure. The Mux would be replaced (after cable is
verified) if either its data channel or one of its ports port is bad. Historical failure
rate data could be part of the system model improving terminal candidate selection.

The model of the subsystem consists of from 1 to 8 drives, one or two muxes, either 4
or 8 mux ports, one DCC, and 2 data channels running through each mux.

ISOLATING FAUL1Y COMPONENTS

Overview

Our goal is to develop a system which will analyze a sequence of error messages
within the context of a given model and identify a faulty component. If insufficient
data is available, the system will use the model to develop hypo. theses about the
potential faulty components. It will then either indicate the faulty FRU (in trivial
cases) or suggest efficient ways to eliminate suspect parts, such as reconfigure the
cables or sub-system.

Isolating a faulty component when not trivial is an iteration process. Given a specific
configuration and set of error messages, our inference engine should identify the
strategy to measure values, replace, or rearrange components to eliminate suspects.

10

SNAP: Doumani, Martin, Ritter, Spurgin

The KB system employs a two stage process for refining the list of potential failure
suspects until a single likely candidate.is indicated for replacement. During each
iteration of the system, the first stage utilizes the error messages and a framework of
subsystem configuration to deduce the set of possible faulty components. A list of
suspect components is the output of stage one.

Where the output lists more than one suspect component, another error message is
typically required to further troubleshoot. The KB second stage provides a set of
rules to recommend component reconfiguration prior to executing test instructions
to create and log the next error message. The configuration that exists on receipt of
the next error message is the basis for configuration knowledge of the next KB
iteration, whether or not the site specialist configures as recommended.

Deducing Faulty Components

The KB system takes data in the form of sequences or error messages and deduces a
set of possible components that might have failed. Interview with service engineers
yielded rules of the form:

"IF the system has configuration X AND drive Y fails
THEN EITHER drive Y is bad
OR mux Z is bad
OR channel W of the DCC is bad".

While it is possible to develop a traditional knowledge base in the IF ... THEN form,
the rules would grow unmanageably large when expanded to deal with all possible
system configurations .. We propose a logically egmvalent representation using a logic
matrix which accommodates multiple configuratmns without the combinatorial
penalties. Similar work has been done by Jau et al. [10].

For each position where a disk may be placed, there exists a data path back to the
DCC. We represent this path in a matrix like table 4:

MP1 MP2 MP3 MP4 MP5 MP6 MP7 MPS M1A M1B M2A M2B DCCA DCCB
PO 100000001000 1 0
P1 0 1 0 0 0 0 0 0 0 1 0 0 0 1
P2 0 0 1 0 0 0 0 0 1 0 0 0 1 0
P3 0 0 0 1 0 0 0 0 0 1 0 0 0 1
P4 0 0 0 0 1 0 0 0 1 0 1 0 1 0
P5 000001000101 0 1
P6 000000101010 1 0
P7 0 0 0 0 0 0 0 1 0 1 0 1 0 1

A configuration is determined by associatin~ a set of drives with a set of positions.
This mapping is kept in a system configuratmn table which can be displayed by the
operator. When an error message is received, the Of>erator is notified and asked to
run the system. When the system is executed, all drives are accessed. The result is a
set of error messages from the various partitions. For each error message we identify
the drive associated with the partition. From the system configuration table we
identify the position of each drive. Using the matrix from table 4, we can identify a
set of vectors which represent possible faulty components.

11

SNAP: Doumani, Martin, Riller, Spurgin

In a similar manner, any drives which did not produce error messages can be mapped
to positions and thus to vectors which describe components which must have worked.

If pi is the set of components associated with position i and di is drive ~ then we
define:

F=P .union. D Where:
pi is an element of P if a drive position Pi failed and
di is an element of D if an error message was received from drive di.

Likewise, we define:

W= P{prime} .union. D{prime} Where:
pi is an element of P{prime} if no error message from a drive at position pi and
di is an element of D{prime} if no error message was received from drive di.

Then define:

S= FandnotW

That is S is the set of components which did not appear in a set of working
components and did appear in a set of failed components.

Since the system was involved in response to an error message S can not equal the
Null set. If S contains one element, it is identified as the failed component. If S
contains multiple elements, the operator is asked to identify the known $OOd
components. If multiple elements still exist, after this step, the next step is to suggest
new configurations.

For example, suppose we had a configuration like Figure 2 (below).

Assume error messages are received from dl and d7.

Using the configuration table and the matrix from table 4:

pl= {O 1000000010001}

p7 = {O 0000001010101}

F = {O 1000001010101}

Similarly:

pO = {1000000010001 O}

p3 = { 0 0 0 1 0 0 0 0 0 1 0 0 0 1}

W= {100100001100 11}

So:

S = {O 10 0 00010001 0 O}

12

SNAP: Downani., Martin, Rittc:r, Spurgin

This vector implies that thef.roblem is either mux part 1, port 7, drive 1, drive 7,
or channel B of multiplexer . A normal tendency m this case might have been to
suspect DCC channel B or MuxO since they are common. >

mux port

r ---------,
~- I
I I
I+----+--.. I

Channel A : LM_u_x._1___,-+---i---'-_..:.M=u;_.x_O.:...-.i..-1--'---r-: --1 Dual-Channel
_ •••••• _ •••• ~ • 1 • • • Disk

I
Channel B I 1 Controller

I
I '--+---+-~ I

L_ ----- ----- __ _, I
I
t
I
l_

S tem Bus

System Cord Coge

Figure 2: Partially configured subsystem

If the method produces multiple candidates, SNAP will suggest a new configuration
be used to isolate failure candidates, or most probable candidate if reconfiguration
will not produce more information. This would for example require the
service technician or systems administrator on site to switch cables, connecting
drives to another Mux port or DCC channel. When the above method is repeated
with the new configuration, the set of components which must have worked is
combined with the set of components that must have worked in previous passes
before subtracting from the new set of possible faulty components. Very few passes
would be expected to isolate the faulty component. Using our example, the S vector
from the previous configuration will be combined with the F and W vectors
from the next configuration to produce the next S vector. If Sl is the previous S
vector and S2 is the next S vector, and if F2 and W2 are the F and W vectors from
the next configuration, then

S2 = (Sl or F2) and not (Wl or W2)

Next Configuration Analysis

Example of a series of rules for creating subsequent configuration:

IF there are candidate drives
AND
the number of good drives is at least equal to the number of candidate drives

THEN replace each candidate drive with a good drive.

IF there are good drives
AND
there are more candidate drives than good drives

THEN
{

IF the number of candidate channels with at]east one candidate drive is
more than or equal to the number of good drives

13

I
1
I
I
I
I
I
I
I
I
I
I
I
I

_J

}

SNAP: Doumani, Martin, Ritter, Spurgin

THEN replace all good drives with candidate drives such that each
candidate drive is on a different candidate channel.

IF there are less candidate channels with at least one candidate drive than
there are good drives

THEN select one candidate drive from each candidate channel and replace it
with a good drive

AND
replace each remaining good drive with a yet unmoved candidate
dnve, arbitrarily

IF the remaining candidate drives (not replaced with good drives) are less
than or equal to the number of non-candidate ports

THEN move all remaining candidate drives into non-candidate ports

IF the remaining candidate drives (not replaced with good drives) are
more than the non-candidate ports

THEN move a candidate drive into each non-candidate port arbitrarily,
leaving any remaining candidate drives unmoved.

IF there are candidate drives
AND
no good drives

THEN
{

}

IF there are at least as many non-candidate ports as there are candidate
drives

THEN move all candidate drives into non-candidate ports

IF there are candidate ports
AND
there are more non-candidate drives than candidate ports

THEN move a candidate drive into each non-candidate port, arbitrarily

IF there are no candidate drives
THEN
{

}

IF there are candidate channels with one candidate port and one non
candidate port
AND
there are at least as many good drives as there are candidate channels
with one can_didate port and one non-candidate port

THEN move a goodarive into the non-candidate port of each such channel

IF there are less good drives than there candidate channels with one
candidate port and one non-candidate port

THEN move each of the good drives into the non-candidate port on a
candidate channel

Following are the rules for terminal cases at which the iteration through the system

14

SNAP: Doumaoi, Manin, Ritter, Spurgin

will stop. Also included is the recommended user action when each of these terminal
cases is arrived at.

IF no candidate components are left
THEN the tests terminated successfully

IF a candidate drive is attached to a good port
THENthe drive is bad. Replace it.

IF all components in the system are candidates
THEN no further isolation is possible, so:

IF there is only one MUX in the system
THEN replace the MUX

IF there are 2 MUXes in the system
THEN replace the DCC

IF a good drive is attached to a candidate port on a good channel
THEN the port is bad. Replace the MUX

IF a channel is the only candidate along the path between a good drive and the
DCC (i.e. channel is on the second MUX and all other components along
path are known good)

THEN the channel is bad. Replace the MUX.

Sample Session

This section consists of an example interactive troubleshooting session. "System"
represents messages from the Al system while "User" represents responses supplied
by the session troubleshooter in the following dialogue. Parenthesized statements
are included for clarification of this example only, and are not part of the dialo~.
Example of session initialization is a customer ca11 to field service hotline. Typically a
modem line is set up for remote acquisition of error messages, system configuration,
and to run diagnostics.

System> Welcome to the Disk Dri~e Troubleshooting Aide.
Please~ in your answers following the "User" prompt. You may type "Configuration" or
"Explain at any time. "Configuration will display to you the current Disk Drive Subsystem
conl:i~uration, and "Explain" will describe to you the reasoning which went into the latest
decision made by the 'troubleshooting Aide.

This is your current Disk Drive Subsystem configuration:
(on X-terminals an illustrat1on would appear similar to figure 1, or thlrd page in Appendix A)
You have a single MUX with drives in positions 0, 1and2.
Would you-like to proceed with the troubleshooting?

User> Yes.

(System runs tests on all disks and executes the first stage of inference)

System> Candidate components are:

4 TheDCC ~
Disk in position 0
Disk in position 2

3 TheMux

nter the number(s) corresponding to any of the components above which you know to be

15

SNAP: Doumani, Martin, Ritter, Spurgin

good, or 0, if none.

User> 0

(System runs second stage of inference)

System> To continue re.configure your Disk Drive Subsystem by doing one of the following:

~
Replace Disk in position 0 with Disk in position 1. (graphics showing disk cable reroute)
Replace Disk in position 2 with Disk in position 1.
en done, run the remote diagnosis •configuration• test (if connection is established), or

enter the number corresponding to the configuration you have selected?

User> 1

(System updates its configuration table, reruns tests on all disks and executes the first
stage of inference)

System> Candidate components are:

The DCC ~
Disk in position 2
TheMux

nter the number(s) corresponding to any of the components above which you know to be
good, or 0, if none.

User> Explain

System> After replacing the Disk in position 0 with the Disk in position 1 and rerunning the
tests, error messages from the Disk in position 0 disappeared. Conclusion: Disk 0 is good and
should therefore be removed from the list of candidate components. If you also replaced any of the
other subsystem parts with known good parts from spares or another working subsystem, you may
eliminate those failure candidates.

Candidate components are:

3 TheDCC ~
Disk in position 2

2 TheMux

nter the number(s) corresponding to any of the components above which you know to be
good, or 0, if none.

User> 0

(System runs second stage of inference)

System> To continue reconfigure your Disk Drive Subsystem by doing one of the following:

[

Replace Disk in position 2 with Disk in position 0.
2 Replace Disk in position 2 with Disk in position 1.

en done, enter the number corresponding to the configuration you have selected?

User> 1

(System updates its configuration table, reruns tests on all disks and executes the first
stage of inference)

System> Candidate components are:
1) TheMux
2) TheDCC

No further isolation is possible.
Enter the number(s) corresponding to any of the components above which you know to be
good, or 0, if none.

User> 0

(System identifies a terminal condition)

16

SNAP Doum.ani, Martin, Ritter, Spurgin

System> No further isolation is possible. We suggest that you replace the Mux with a known
good one from spares depot << name and phone for nearest spare Mux, from Service DB».

Any further questions?

User> Explain

System> After replacing the Disk in position 2 with the Disk in position 0 and rerl.rYling the
tests, error messages from the Disk in position 2 disappeared. Conclusion: Disk 2 is good and
should be removed from the list of candidate c~ts. It is not possible to further
isolate among the remaining c~ts. Applying the terminal condition rules resulted in
suggesting that you replace the Mux. Given your configuration and known failure rates the Mux is a
1110re probable candidate for failure than the DCC.

Any further questions?

User> No

System> Thank you.

CONCLUSIONS AND RECOMMENDATIONS

We have identified disk subsystem troubleshooting as a problem suitable for
prototyping an expert system at Sequent. The prototype would show reasonably
good pay back if introduced in a small production system, with break even expected
within a year.

Integration into production should leverage existing resources such as remote
diagnostics, data bases, and technical illustrations from service manuals. Due to the
percentage of code required for these standard interface software components, using
AI tools that are UNIX-based and include X-window graphics and Oracle interfaces
are highly recommended even for the prototype.

A portion of SN AP appears to lend itself well to a combination of rule-based and
model-based reasoning. Because of the model simplicity and interactive means of
building the configuration matrix around a subsystem rather than the entire
computer system, some ·of the traditional deficiencies of shallow reasoning KB
systems may be avoided. SNAP team focus should be on meeting user requirements
which include interfacing with their existing tools like data bases. Careful attention
to interfaces and modularity will enable SNAP to take advantage of other non
model-based features. Other problems may be better handled by frames (like LES
[12]), or even independent or loosely coupled inference engines.

Bibliography

[1] Angeline, P.J., and D'Onofrio, T.W., "A model-based Expert system for
component-level fault diagnosis," in Proc. SPIE-Applications of Artificial Intelligence
V, 1987, pages 20-27.

r21 Barr, A and Feigenbaum, E.: "The Handbook of Artificial Intelligence," William
kaufmann Press, CA, 1981.

[3l Barr, A and Feigenbaum, E.: ''The Handbook of Artificial Intelligence: Volume
2,' HeurisTech Press, Stanford Calif., 1982.

[4] Bauchannan, B.G., and Duda, R.O., "Principles of Rule-Based Expert Systems,"
Advances in Computers, Vol 22, 1983, pages 163-184.

rs] Davis, R., et Al., "Diagnosis Based on Description of structure and Function,"
Proc. Conf. Artificial Intelligence, 1982.

r6] Davis R., "Diagnostic reasoning based on structure and behavior," Artificial
Intelligence., Vol 24, 1984, pages 347-410.

[7] Douglas, J., "Delivering Online Expertise," EPRI Journal, Vol. 14, April/May
1989, pages 24-33.

rs] Folley, John D. Jr. and Hritz, Rohn J., "Embedded AI Expert System
Troubleshoots Automated Assembly," IE, April 1987, pages 32-36.

[9] Freiling, M., Knowledge-Based Engineering Management, course notes, 1990.

[10] Jau, J. Y., Kiamilev, F., Fainman, Y., Esener, S., and Lee, S. H.: "Optical
expert system based on matrix-algebraic formulation," Applied Optics, Vol. 27, No.
24, December 15, 1988, pages 5170-5175.

[11] Laffey, T.J., Mylopoulos, J., and Tennant, H., EXPERT SYSTEMS: Integration
with Databases and Real-time Systems, The 34th Videoconference Seminars, Via
Satellite, IEEE, March 28, 1990.

D2] Laffey, T J., Perkins, W.A., and Nguyen, T.A, "Reasoning About Fault
Diagnosis with LES," IEEE Expert, Spring 1986, pages 13-20.

[13] Liu, David, Ed., Expert Systems, a round table discussion, published by
CASNSME, Society of Manufacturing Engineers, Dearborn, Mich., 1990

[14] Miline, R., "Artificial Intelligence for Online Diagnosis," IEE Proceedings, Vol.
134, #4, July'87

[15] Miline, R., "Fault Dia$nosis & expert systems," in Miline, R.W., and
Chandrasekaran, B. (Eds.), The 6th International Workshop on Expert Systems and
their Applications, Avignon, France, Apr 1986.

D6) Miline, R.,: "Reasoning about Structure, Behavior and Function," SIGART
Newsl., July 1985, (93), pages 4-59.

Bibliography, cont.

f17] Niwa,K.,.Knowledge-Based Risk Management in Engineering: A Case study in
Human-Computer Cooperative Systems,John Wiley & Sons, 1989.

f18] Novak, T., Meigs, J.R., and Sanford, R, ''Development of an Expert. System for
Diagnosing Component-Level Failures in a Shuttle Car," IEEE Transactions on
Industry Applications, Vol 25, No. 4, July/Aug 1989, pages 691-698.

[19] Schorr, H. and Rappaport, A, Innovative Applications of Artificial Intelligence,
AAAI Press, Menlo Park, CA 1989.

[20] Sequent Computer Systems, Inc, 1989 Annual Report, March 1990

[21] Sequent Computer Systems,_Inc. Profile, Black and Company, May 1990

f22] Van Melle, W J., System Aids in Constructing Consultation Programs, UMI
Research Press, Ann Arbor Mich., 1981.

r23] White, B. Y., and Fredricksen, J. R.: "QUEST: Qualitative Understanding of
Electrical Systems Troubleshooting," SIGART Newsl., July 1985, (93).

