ETM

ENGINEERING & TECHNOLOGY MANAGEMEN

Title: Optimal Assignment of Resources in a Software Project
Course:
Year: 1988

Author(s): M. Hoskins, R. Martin and K. Spurgin

Report No: P88002

ETM OFFICE USE ONLY
Report No.: See Above
Type: Student Project
Note: This project isin the filing cabinet in the ETM department office.

Abstract: Thisreport explores the effects of different personnel
assgnments in developing a software product. The L.P. model considers the
skills of each engineer, the requirements of each task, and the overall

resource limitations on the project. Optimal personnel assignment is made
within this environment.

OPTIMAL ASSIGNMENT OF RESOURCES
IN A SOFTWARE PROJECT

M. Hoskins, B. Martin, and K. Spurgin

EMP - P8802

Optimal Assignment of Resources in
a Software Project

ABSTRACT

This project explores the effects of different personnel assignments on the
overall effort in creating a software product. A model is developed which
represents the skills of each engineer, the requirements of each task, and
overall resource limitations on the project. Within this environment the
goal is to determine the optimal assignment of personnel.

Optimal Assignment of Resources in
a Software Project

Mart Hoskirs
Bob Martin
Kerry Spurgin

EAS 543

1. Introduction

Every engineering project is composed of a collection of tasks. Most projects
also involve a team of engineers who must work together to accomplish these tasks.
Each engineer possesses a unique mix of skills and experience that determine how
successful he will be in performing assigned tasks. One of the problems facing an
engineering manager is to assign engineers to tasks in a manner that will put the best
person for each task on that task. We will attempt to construct a model for this
assignment process which allows the manager to develop a detailed description of
the engineer’s skills and the task requirements, and to allocate engineers as an
instance of the generalized LP assignment problem.

2. Assumptions and Limitations

The primary limitation of this model is its failure to include task dependency in
the objective. This limitation is accepted to keep the objective function linear. As a
result of this limitation the model will determine the most efficient allocation of per-
sonnel in the sense that each assignment puts the best available engineer on that task,
but will fail to consider the effect of these assignments on the critical path of the pro-
ject. It may follow that the "best” allocation of resource does not yield the shortest
project duration. Extension of the model to include the project structure is an entic-
ing project but beyond our current capabilities.

The software project being modeled is representative of many projects in
today's software development environments. Whether being developed fora PCora
mainframe, most software contains the elements we have chosen. To apply this
model to other projects, care should be taken to precisely identify the actual tasks
and to analyze the task requirements.

3. Model Description

To develop a detailed description of the project tasks and the engineers, we will
use a matrix based approach. We will describe each engineer in terms of his skills.
A matrix can be formed with each row representing an engineer and each column
representing a particular skill. The elements of this matrix will describe how well
each engineer has mastered each skill. This matrix will be called the Skills Matrix.
We will discuss each skill later in this section.

We also assume that each task can be described in terms of a combination of
certain generic types of functions such as analysis, design, etc. A matrix can also be
formed in which each column is an individual task and each row is a particular

=

function. The elements of this matrix will tell how much of each function is required
for each task. We will refer to this matrix as the Task Matrix.

A third matrix is required which describes the relationship between the skills
and the functional capabilities. In this matrix the rows refer to the previously defined
skills and the columns refer to the previously defined functions. The elements of this
matrix describe how much of each skill is utilized in performing each function.
Since both the skills and the functions are characteristic of general populations, this
matrix should be derived from our general knowledge and experience rather than
from the specifics of a particular project.

By computing the product of these three matrices, we form a matrix in which
each row refers to an engineer and each column refers to a task. The elements of this
matrix describe how well each engineer will do on that particular task. We will refer
to this matrix as the Efficiency matnx.

3.1 Skills Matrix

The following skills categories attempt to identify the major skill areas that
seem to be required to perform engineering tasks. We have attempted to broaden
the definitions to address the entire development cycle, assuming that the
engineering team plays an active role in the early stages of product definition. In
an environment where the engineers are limited to implementation, the model
can be adjusted using the Function matrix.

3.1.1 Written Communication

Written communication is defined as the ability to create written docu-
mentation. While this naturally includes basic language skills, it also
includes the engineer’s ability to translate ideas into a specific and precise
description of the project.

3.1.2 Oral Communication

Since most of the initial definition is done in meetings with the custo-
mer or a marketing group, the engineer should be able to present ideas
clearly in a non-technical manner. The ability to keep the discussion at the
proper level of detail and listening skills are also factors in this category.

3.1.3 Creativity

While this skill seems more intangible, it is certainly essential. We use
this category to cover a broad definition of creativity, assuming that it would
apply to all facets of the project.

3.1.4 Implementation Language Knowledge

This skill covers the engineers mastery of the chosen implementation
language. Factors to consider in rating this skill are size and complexity of
recent similar projects, exposure to advanced training, and general program-
ming experience.

w e

3.1.5 Operating System Knowledge

Because the operating system will have a major effect on the software
design, the degree of prior experience with the chosen OS is important to the
design phase as well s the implementation phase. This category includes
knowledge of the syntax, functions and idiosyncrasies of OS utilities, as well
as system development tools.

3.1.6 Application Knowledge

This category includes all knowledge of the goals of the final project.
This is perhaps the most specialized knowledge since it is often different for
each project. If the project was to produce a payroll system, this category
would include knowledge of the companys benefits, withholding rates and
interfaces to other internal databases.

3.1.7 Interpersonal Skills

Because programming is a team effort, each engineer must deal effec-
tively with other team members. The ability to work with others in a com-
petitive and creative environment is a significant factor in teams perfor-
mance. This category includes traits like attitude, ego, cooperation, and
degree of commitment to the team’s success.

3.1.8 Self Discipline

This somewhat intangible attribute refers to the ability of the engineer
to finish a task without neglecting the details. In code implementation it
would affect the expected number of bugs created by the modules he wrote.
In other tasks, we would see other effects of his attention to detail or lack of
it.

3.1.9 Prior Project Experience

While this is closely related to application knowledge, it actually refers
to the engineers understanding of the project’s phases, the goals of each task
and the relative importance of the different tasks. We assume that people do
things better the second time around, so an engineer should be more effec-
tive on his second project than on the first one, even if the application has
changed.

3.2 Functional Tasks

The following functions are a generalized way to categorize the activities
involved in software development.

3.2.1 Requirements Analysis

This activity is basically "deciding what to do". It includes all efforts to
work with the customer and other parts of the company to identify what the
product must accomplish, what constraints exist on the implementation, how
the user interface must work, and what acceptance criteria will be used. Itis
the process by which the general description of the product is translated and
expanded into a precise and complete definition of what will be built.

3.2.2 Architecture Definition

This function is described as architecture because it creates a top level
design that meets the needs described in the requirements within any con-
straints which may exist. In some projects, this function may include the
specification and choice of computer hardware and operating systems. In
others, many constraints may exist and the function involves finding an
approach that will accomplish the objectives within those constraints. For a
relatively unconstrained project, this function is primarily creative. For a
highly constrainted project, it may require more analysis and deduction.

3.2.3 Detailed Design

Detailed design is the process of translating the higher level design into
documentation that can be used to guide and coordinate the coding function.
While the methods and form of the documentation may vary with different
development methodologies, the basic function of constructing a detailed
and specific model of the program is usually viewed as a necessity if the
implementation is to be done in a controlled manner.

3.2.4 Coding/Implementation

This function is the normal creation of programs that one usually thinks
of as being the primary task of a programmer. It includes some design at the
lowest level as well as debugging and testing of small portions of the pro-
gram.

3.2.5 Testing

Testing is distinguished from debugging in that the goal of testing is to
determine that the program works. It usually includes development of a

series of tests that can be run in a repeatable fashion to verify the program at
different levels of completion.

3.2.6 Integration

This functon involves bringing together different pieces of the system
and verifying that they work together correctly. Because the pieces are usu-
ally done by different people, this function requires a higher degree of
cooperation than some other functions. As system problems are uncovered it
may be difficult to isolate the problem to a specific module. Since no one

person is an expert on the entire system, diagnosis of problems becomes
more difficult.

3.2.7 Documentation

The documentation function may require that the engineer write the
user's guide and other supporting documents. In other situations the
engineer may be required to work with professional writers who develop the
documents. This function also includes the development of any internal
design and maintenance documents that will be used to support the software.

3.3 Task Description

The following tasks reflect the development model which has been most
common during the past 20 years. This model recognizes the complexity level
of the software and the communication needs of a large team. Thus it first estab-
lishes a written description of the product and then translates the product into
code.

3.3.1 Develop Requirements Document

The requirements document defines the goals of the project. The task of
producing this document requires that the team document their collective
understanding of the customers needs. We assume that this task is per-
formed by the project team. In other projects the requirements may be pro-
vided by the customer in a Request For Proposal document.

3.3.2 Define User Interface

While the definition of the interface can be done later in the product
development cycle, it is advantageous to distribute proposed interfaces as
early as possible. Often the existence of an interface will stimulate the dis-
cussion of other requirements. This task requires more creativity and custo-
mer knowledge than other definition tasks.

3.3.3 Define Operating System Requirements

Unless the software project includes the creation of an OS, the OS will
have a dominant influence on the overall design. Thus it is essential to
describe the demands that the software will place on the OS as well as the
constraints that the OS will place on the software. Areas like interrupt

response time, memory needs, and data storage requirements should be
examined in this task.

3.3.4 Create Top Level Design

Within the limitations identified in the previous tasks, the team creates
a top level design. This design should identify the major software com-
ponents in some detail. Through successive expansion of the design, each
component should be designed untl the lowest level components are
identified. The degree to which the components should be described and the
level of description should reflect the needs of the software team. The goal
of the design is to provide a basis for project control and communication.

3.3.5 Develop Functional Design Document

As a way of formalizing the design process, this document describes
how the design components will work together to address the requirements
previously specified. It serves as an overview to the dﬁmgn and is useful
during the maintenance phase.

3.3.6 Prototype User Interface

Unless the user interface is very simple, developing a prototype of the
user interface is needed to confirm that the project is still addressing the
user’s requirements. Often a customer will not read the requirements docu-
ment or the functional design, so the prototype becomes the first time that
the teams receives confirmation that they are producing what the customer
really wants. In addition to stimulating communication about requirements,
the prototype often uncovers system problems early, tests assumptions about
the OS, and reassures the customer.

3.3.7 Develop Detailed Software Design of User Interface, Application and
0s

The detailed design describes each component in a precise manner. It
identifys all interfaces such as common data structures and calling sequence.
It should provide enough information about the intemnals of the component
that an engineer could modify the component with only the detailed design
specification and the source code.

3.3.8 Implement design

This collection of tasks involves the actual translation of the detailed
design specifications into working code. In reality different implementation
tasks would have properties that might make us assign them to specific pro-
grammers. We would normally try to group similar tasks to minimize learn-
ing time or assign more complex tasks to more senior engineers. To reduce
the complexity of the model we have chosen to treat all implementation

tasks as essentially equal. The model could easily be extended by expanding
the skills and function dimensions.

3.3.9 Test and Integrate

Test and integration is where the components are put together. The
integration plan should call for an orderly and systematic integration which
allows functions to be tested with a minimum of special test code. A major
part of this phase is the effort to solve system problems as a team. This task
may also involve measuring system performance and optimizing some of the
System components.

3.3.10 Create System Documentation

While the creation of the user manual may be done by an external
group of writers, the team may produce additional documentation of the
implementation to aid in future maintenance. These documents would
describe the tools used to create the system, problems which were avoided
but not solved, potential areas for enhancement and any other information

that is likely to be lost is the current members of the team move to other
assignments.

3.3.11 System Functional Test

This task is the final test of the system against the requirements as
specified in the requirements document. It may involve beta site testing and
modifications. In some projects this test may stimulate a request for program
maodifications beyond the scope of the initial definition, thus starting a new
development cycle.

4. Data Collection

The efficiency ratings for engineers in this model are derived from a project
manager’s subjective ratings of an engineer’s skills and the manager’s assessment of
the functional requirements of the project tasks.

The Function Matrix is developed from expert’s knowledge about the software
development process. This matrix remains the same regardless of the software pro-
ject allocation problem being run.

The efficiency rating process captures the interrelationships among the various
skills and functions required for a software engineering project. By its multlevel
nature and reliance on subjective values, this process lends itself to a "Hierarchical
Decision Model" approach. The matrices are illustrated in figure 1.

Using this approach, a project manager’s quantitative judgements of engineers’
skills are elicited using the constant sum method. The manager is first asked to make
pairwise comparisons among the skills which characterize a software engineer.
Through a series of matrix operations, normalized values for the skill ratings are cal-
culated. Scale comrection is achieved by obtaining the project manager’s pairwise
comparisons among engineers for their relative proficiencies in a particular skill area.
From this input the normalized Skill Matrix is derived. A similar set of steps is used
to obtain numerical values for the project manager's evaluation of the functional
requirements of the project. These judgements are represented in the Task Matrix.

The Skills Matrix is multiplied with the Function Matrix which has been
developed from expents’judgement using the same pairwise comparison method
described above. The Function Matrix is also in its "normalized form”. The product
of these two matrices is normalized and multiplied with the Task Matrix to give the
Efficiency Matrix (E).

Normalized results for the matrices are presented in figure 2.

David L Cleland and Dundar F. Kocaoglu, Engineering Management, (New York: McGraw-Hill,
19XX), pp. 449458,

5. Modeling Process

The model for engineer/task selection is constructed as a simple linear program-
ming model. This mode! is formulated using the following verbal description:

e Minimize the total engineering time spent on the project.
e Do not exceed the available work time for each individual engineer.
° Complete the individual task work requirements.

Mathematically, the engineerftask selection model is expressed as below with
clarification of model elements following:

Objective Function:
Minimize:
Neng Ntask

»n
1

i=l j=

Where: i =The Engineer of interest.
i = The particular task.
X[i,j] = The total number of hours spent by
Engineer i on task j.

Subject To:

1. Nrask

% X[ij] <= ET[i] For all Engineers.
j=1

Where: Et = The total available time for
Engineer i.

2. Neng
ZCHJ] X[ig] »= TTY[j] For each Task.

i=1

Where: C[i,j] = The adjustment factor from the
efficiency matrix for engineer
1o0n task j.

T'T[j] = The total effective time required
for each task j.

The modeling process begins with three parameter matrices and two labeling
matrices. The parameter matrices are defined as ET[i], TT(j], and C[i,j]. The labeling
matrices are the names of the engineers and the tasks to be completed.

The ET[i] matrix is the total time that each engineer has available for task
work. This input is a simple determination by the Engineering Manager of total time
available for task work for each engineer in his staff.

The TT[j] matrix is the total time that would be required of the nominal indivi-
dual for completion of the task. This input is a projection judgement made by the

-10-

Engineering Manager.

The the efficiency matrix is derived from a Hierarchical model, as described
above. A diagram of the process which yields the efficiency matrix is presented in
figure 3. This matrix is a reladons matrix between two distinct categories. In our
example, the categories are engineers and tasks to be completed by those engineers.
As a reminder, the basis for the generation of the efficiency matrix was the relative
times to complete individual tasks. Therefore, the efficiency matrix is the relational
comparison of engineers to tasks to be completed. Using the efficiency matrix we
may now gather the required input for a formal formulation of the LP problem. This
data is shown in figure 4.

The above input matrices are supplemented with an Engineers name and Task
name matrices. These are used for clarification of results but do not enter into the
calculations. For the purposes of the engineer/task selection problem the efficiency
matrix must be transformed. The transformation normalizes each task column to the
task column average. The motivation behind this approach is to relate each
engineers efficiency on each task to the nominal time to complete the task, which is
defined as TT[j]. The resulting transformed matrix is denoted as C[i,j] in the above
mathematical model. Figure 5 shows the C matrix.

The above input matrices are then converted into the Linear Programming
model shown in figure 6. The model was then entered into the LINDO problem solv-
ing package on the Portland State University computer system. After successful exe-
cution the output, attached as figure 7, was obtained.

Because of the extensive matrix manipulation required to formulate the prob-
lem, the normal LINDO input mechanism was bypassed. Kerry Spurgin wrote a pro-
gram to calculate the input matrices and to interface the program output to LINDO.
The listing of this program is attached in Appendix A, as an example of how to suc-
cessfully drive the LINDO program from an external program

6. DISCUSSION OF RESULTS:

The LINDO program sucessfully found an optimal value for the objective func-
tion at 7429 man-hours. The total nominal man-hours for the collection of tasks was
7720, so the allocation of engineers has allowed us to improve on a nominal solution
by 291 man-hours. If we assume that the project was begun with a budget of 6
engineers for 9.5 months as reflected in the constraints, then we may observe that the
slack variables for Sam and Paul are 97 and 1112 respectively. These values suggest
that, given the proficiencies represented in the skills matrix, the project could almost
be done with five engineers, leaving Paul to work on another project. This allocation

is what we would expect when we examine the skill matrix and observe that Paul’s
skills are weakest in most areas.

In addition to the reduced man-hours, we also note that the recommended
assignments make sense and reflect the actual assignments that were made on the
project. In those areas where differences exist, they can be easily explained by fac-
tors which were not included in the model. For example Steve was assigned to an
implementation task based on his strength in application knowledge and prior experi-
ence. In reality, his lack of self discipline and oral communication reduced his

all«

effectiveness in this role. In retrospect, this assignment could lead us to reconsider
the values assigned in the function matrix.

A second run of the program was made with the allowed man-hours constrained
to a little over 8 months for each engineer. This is a typical management approach to
attempt to reduce the time to market by requiring a more aggressive deadline. The
previous solution indicates that a solution within the total man-hours is possible, so it
initally seems reasonable to set the target project duration to this date.

The program found an optimum value at 7492, It is significant that the value of
the objective function increased. This makes sense because the increase constraints
imply that we run out of our more productive resource sooner and are forced to
assign less capable people to the task. In reality this situation is made even worse by
the increased communication required to have more than one person doing the task,
but communication overhead was not modeled. The assignment of personnel in the
more constrained model reflects the necessity to use less productive engineers on cer-
tain tasks. It is interesting that constructing a project with relaxed constraints actu-
ally results in a more efficient project. This observation seems to run counter to the
intuition that most managers bring to the scheduling process. The tendency to view
schedule creation as a negotiation between the developers and the customers leads us
to ask for the product as soon as possible and then to settle on a compromise. To the

degree that the model reflects the actual project, we can see how this is a counterpro-
ductive approach.

Because of the construction of this model, the interpretation of data from the
sensitivity analysis is not straight forward. A valuable extension to the system would
be the ability to hold each of the original input matrices constant two at a time and
compute the resultant variability in the third matrix which would create the values
given by LINDO in the sensitivity analysis. In particular, by projecting the sensi-
tivity values onto the skill matrix we could see the benefit of improving an engineers
skills in a particular area. Given a limited education budget, this information would
help us direct our resources to the most beneficial training.

Mapping the sensitivity data onto the task matrix would tell us if a task should
be approached differently or perhaps help determine the advantage of different
development methodologies given a certain set of engineers.

7. Conclusion and Future Work

The initial use of this model seems to establish it as a potential way to approach
the allocation of engineers to project tasks. Since most project organization methods
assume that all engineers function at the same level, the mode] could lead to under-
standing of the dynamics of engineering projects which are currently poorly defined.
The extensions to allow project task networks and projection of sensitivity data are
the most promising areas for future extensions. Additional areas to incorporate are
interpersonal dynamics, communication overhead and learning time on a task basis.

FIGURE 1.
MATRIX FORMAT

Skills Matrix:

Blerlils o a0 ow i W
Engineers |r.—_=-=—-===—-
S[EJSj = a
Functions Matrix:
Fancktians o o o«
Skills
FIE:fJ - 2 “
Tasks Matrix:
TRERE G ca w oa e o
Functions
Flf,t) = : “

Intermediate Matrix (Skills X Functions):

Functions
Engineers

Ile,f] =

|

Efficiency Matrix (Intermediate X Tasks):

Tasks
Engineers

E[E,t] ks

]

Legend:
S = 8kills Matrix (e Engineers by s Skills)
F = Functions Matrix (s Skills by f Functions)
T = Tasks Matrix (f Functions by t Tasks)
I = Intermediate Matrix (e Engineers by f Functions)
E = Efficiency Matrix (e Engineers by t Tasks)

'‘KILLS MATRIX (3],

FUNCTION MATRIX (F),

TASK MATRIX

Functions

Ll
£2
£3
f4
£5
fte
ET

Engineers
SAM
STEVE
KEN
JOHN
PAUL
RANDY

Skills
[
52
53
54
s5
=3
57
s8
s9

i

£l

FIGURE 2.

NORMALIZED INPUT HMATRICES
NORMALIZED:
Skills
sl 52 s3 54 s5 s6 s7 s8 59
Im
2 i N (5) ST [ool T2 .44 0, 57 Pl RS0
Z Bk ¥ oEE . e X E.FE 3,549 §.57 B.BE 2,59
A [e T i AR o | ST 1 O e T e | [2 R L
lF X2 Feollek koA @B FORE - FoFS e BLGETE 4l
1.44 g 2.59 2.30 2.861 T_.44 3 HeR B85 1.44
2.30 2,30 2. 0E 2.0Y LLoFZ B 57 2.30 2308 O ET
NORMALIZED:
Functions
£1 £2 £3 £f4 £85 £6 £7
2.11 .85 ‘1.85 0,53 0.79 0.79 P
3 1 - e (WL S e R 1 LA [-l 2 A
= o S | - S SR R (R o] ST N 1 e L T
[0 [P [T [T L= S 1 LA 41 ISR (SN Lo N] P T |
.53 Adofs 1T.BE Zo3T F.B8s 1.85 0.53
R i S| L (S s L e e e R e 1 S SO
5. 1 R [1 [1 - F < G52 1.58 1..B5
a3l depgd SheBE @Rl Seddls Rk o3
| ey AnigE GlaiE ele e 1058 2039
NORMALIZED:
Tasks
t2 t3 t4 t5 te 7 t8 te t1l0 tll
.00 0.0 0.00 O0.00 X.80 1.80
Y80 1,88 4.00 Q.00 0§.006 0.00
1.800 &.31 1.80 0.040 0.4a 0.00
5.41 0.%0 631 LBD .00 0.00
TSR it R PR 0.90 6.31 0.00 0.00
0. 00 0,080 0.00 0.%0 0.00 5.41
.00 0.00 pD.0o0 0,00 i oA

FIGURE 2 (Cont.).

COMPUTED MATRICES FROM INPUT MATRICES

" TERMEDIATE MATRIX (S X F), NORMALIZED:

Functions

) L 2 t3 p3E £5 £6 ET
Engineers pmemem—— —————————
SAM Sy 2oad 2.0 .38 2.71 2.39 W.15
STEVE 238 2.39 Z.,37 2.13 F.43 .09 238
KEN Mekd Fo22 3.04 . BE 276 300 F.23
JOHN ol 2 odbh Romg 2009 N DUSE TR
PAUL 21T 2,38 2.34 2.6 3.53 209 2,340
RANDY 2034 2.42 2.43 2085 2.03 2718 2448

EFFICIENCY MATRIX (E = 8 x F x T), NOEMALIZED:

Tasks

£l t2 E3 t4 £Eb tE £ t8 t3 E10 o |

Engineers = ey = —————————
SAM 1.36 T.39 .41 1,44 1.680 1,43 T.47 .42 L.38 '1.39 1.39
STEVE Log6. Lodg deodme ol GRS Dol T g LToSE ol Qe 1,40
KEN 1.94 197 ‘d.0m 2..50 2,17 1084 1.94 1,78 1.4 doge 1091
JOHN 138 Bodise il AlWE EcEd Dl cRedB 138 Red3 (ALES 140
PAUL 1.3 I.42 ‘1.44 1.46 L.60 1.35 T.44 .31 1325 1.41 1.34
RANDY L4l T4 Fody Lo48 doeh Fodd Roas o332 AL 2F (LR 1030

huTE: All table wvalues have been multiplied by 100 for sase in reading.

FIGURE 3.

ENGINFER/TASK ALLOCATION MODELING PROCESS

GENERATE GENERATE
ENG VS. SKILLS SKILLS W3, FUNCT.
HDM HDOM

NORMALIZE

GENERATE GENERATE
ENG. VS, FUNCT. FUNCT. VS TASK
HDM HDM

NORMALITZE

GENERATE

ENG. VS, TASK
HIDM

NORMALLZE E MATRIX

GENERATE
TT VECTOR

TRASFORM

E MATRIX TO
C MATRIX

e

GENERATE
LP MODEL

TRANSFER MUODEL X
TO LINDO

ANALYZE RESULTS

LENERATE
ET VECTOR

e

FIGURE 4.
INPUT TO LPM GENERATION ROUTINE

1. I (e ENGINEERS, t TASKS)
SAM (ENGINEER NAMES)
STEVE (ENGNM[e] MATRIX)
KEN
JOHN
PAUL
RANDY
A (TASK IDENTIFICATION)
B (TASKNMIt] MATRIX)
C
D
E
F
G
H
I
J
K
1.36 3.99 .41 1.44 3.60 1.43 1.47 1.42 1.38 3,39 1.30 (EFFICIENCY MATRIX)
L.46 .47 L.48 1.48 1.63 1.41 1.47 1.38 1.34 1.47 %.42 (Ele,t] MATRIX)
198 1.9% 2.99 1.9% 2.37 2.84 1.94 1.98 1.04 .93 1,91
1 35 1.45 1.48 1.51 1.64 T.42 3.48 1.38 1.33 139 L.40
ka2 Todd 1de YoRE 135 Load o3l 1.25 1od4] 134
41 1 .48 1,47 1.4% ¥.&85 3. 37 1.4%9 L,32 1. 3F 134T J.38
320 (AVAILABLE ENGINEERING TIME)
320 {ET{e] MATRIX)
320
400
300
200
500 (PROJECT TIME FOR TASKS }
110 (TTI[t] MATRIX)
130
700
120
80O
550
750
13
130

800

FIGURE 5.

ADJUSTED EFFICIENCY MATRIX

£l t2 t3
Engineers

SAM e o Y T (R P
STEVE 0.95 0.98 D.97
KEN s [a1 7 2 7L
JOHHN g e Sl 1 s o [
PAUL 0.8 D.31 9.90
RANDY 095 D% 897

oo HOoOO

(Cle,t] MATRIX)

td

.89
.96
.28
.96
.96
<96

[B e e B o B)

ES

.54
34
2
.94
.94
.94

Tasks

té ot t8 ts

B e = S [G o i e B 3
0.95 0.97 0.98 0.94
g (gt (1o o | il
0.95 0,97 0.98 0D.94
0,95 0.90 0.91 0.94
0.95 0.97 0.591 0.94

cooHOooOo

t10

.91
.28
.30
<31
51
.58

el

R e
095
1.30
0.95
0.89
0 A5

FIGURE 6.
LINEAR PROGRAMMING MODEL
(LINDO FORMAT)

MIN ASAM+BSAM+CSAM
+DSAM+ESAM+FSAM+GS AM
+HESAM+ISAM+ I SAM+KSAM+ASTEVE
+BSTEVE+CSTEVE+DSTEVE+ESTEVE
+FSTEVE+GSTEVE+HSTEVE+ISTEVE
+JSTEVE+KSTEVE+AKEN+BKEN+CKEN
+DKEEN+EKEN+FKEN+GEKEN
+HKEN4IKEN+JEKEN+KKEN+AJOHN
+BJOHN+CJOHN+DJOHN+EJOHN
+FJOHN+GJOHN+HJOHN+IJOHN
+JJOHN4KJOHN+APAUL+BPAUL+CPALUL
+DPAUL+EPAUL+FPAUL+GPRAUL
+HPAUL+IPAUL+JPAUL+KPAUL+ARANDY
+BRANDY+CRANDY +DEANDY+ERANDY
+FRANDY+GEANDY+HEANDY +IRANDY
+JRANDY +KRANDY

8T

ASAM+BSAM+CSAM
+DSAM+ESAM+FSAM+GEAM
+HSAM+ISAM+JSAM+KSAM < 1440.00
ASTEVE+ESTEVE+CSTEVE
+DSTEVE+ESTEVE+FETEVE+GSTEVE
+HETEVE+ISTEVE+JSTEVE+KSTEVE < 1440.00
AKEN+EBEKEN+CKEN

+DKEN+EKEN+FEEN+GKEN
+HEEN+IKEN+JKEN+KKEN < 1440.00
AJOHN+BJOHN+CJOHN
+DJOHN4EJOHN4FJOHN+GJOHN
+HJOHN+IJOHN+JJOHN+KJOHN < 1440.00
APAUL+BPAUL+CPAUL
+DPAUL+EPAUL+FPAUL+GPAUL
+HPAUL+IPAUL+JPAUL+KPAUL < 1440.00
ARANDY+BRANDY+CRANDY
+DRANDY+ERANDY+FRANDY+GRANDY
+HRANDY+IRANDY+JRANDY+KEANDY < 1440.00

0.93a5aM+ 1
+ 0.93AJOHN+
0.91ESAHM+ O
+ 0.98BJOHN+

0.%0CSAaM+ 0,

+ 0.97CJIOHN+

0.83D5aM+ 0.

+ 0.96DJOHN+
0.94E5aM+ 0
+ 0.94EJOHN+
0.95F5AM+ O
+ D.95FJOHN+

0.97G32aM+ 0.

+ 0.97GJOHN+
0.9BHSAM+ O
+ 0.98BHJOHN+
1.01I5AaM+ O
+ 0.941J0HN+
0.91J5aM+ 0O
+ 0.91JJOHN+
0.95K5AM+ O
+ 0.95KJCOHN+
END
LEAVE

FIGURE & (Cont.}.

LINEAR PROGRAMMING MODEL

(LINDO FORMAT)

.00ASTEVE+ 1.27AKEN
0.93APAUL+ 0.93ARANDY
.98BSTEVE+ 1.30BKEN
0.91BPAUL+ 0.91BRANDY
STCSTEVE+ 1.29CKEN
0.90CPAUL+ 0.97CRANDY
Se¢DSTEVE+ 1.2B8DKEN
0.96DPAUL+ 0.96DRANDY
.94ESTEVE+ 1.2%EKEN
0.94EPAUL+ 0.94ERANDY
. 35FSTEVE+ 1.23FKEN
0.95FPAUL+ 0.95FRANDY
37GSTEVE+ 1.23GKEN
0.90GPAUL+ 0.97GRANDY
.98BHSTEVE+ 1.Z2E6HKEN
0.91HPAUL+ 0.91HRANDY

.94I8TEVE+ 1.23IKEN

0.94IPAUL+ O.94IRANDY
.9B8JSTEVE+ 1.30JKEN
0.91JPAUL+ 0,98BJRANDY
.95KSTEVE+ 1.30KKEN
0.B89KPAUL+ 0.95KRANDY

Jz0.
480.
160.
160.
960.
320
le00.
2400.
320.
BOO.

200.

oo

0o

00

00

oo

0o

ao

0o

00

oo

oo

IN

FIGURE 7.

LINDO OUTPUT

ASAM + BSAM + CSAM + DSAM + ESAM + FS5AM + GSAM + HEAM
ISAM + JSAM + KSAM + ASTEVE + BSTEVE + CSTEVE + DSTEVE
ESTEVE + FSTEVE + GSTEVE + HSTEVE + ISTEVE + JSTEVE
KSTEVE + AKEN + BKEN + CKEN + DKEN + EKEN + FKEN + GKEN
HEEM + IKEN + JKEN + KKEN 4+ AJOHN + BJOHN + CJOHN + DJOHN
EJOHN + FJOHMN + GJOHN + HJOHN + IJOHN + JJDOHN + KJOHN
APAUL + BFAUL + CPAUL + DPAUL + EFAUL + FPAUL + GPAUL
HPAUL + IPAUL + JPAUL + KPAUL + ARANDY + BRANDY + CRANDY
DEANDY + ERANDY + FRANDY + GRANDY + HRANDY + IRANDY
JRANDY + KRANDY

T i G i

A

SUBJECT TO

END

2) ASAM + BSAM + CSAM + DSAM + ESAM + FSAM + GSAM + HSAM
+ ISAM + JSAM + KSAM <= 1440
33 ASTEVE + BSTEVE + CSTEVE + DSTEVE + ESTEVE + FSTEVE
+ GESTEVE + HSTEVE + ISTEVE + JSTEVE + KSTEVE <= 1440
4} AKEN + BKEN + CKEN + DKEN + EKEN + FKEN + GKEN + HKEN
+ IKEN + JKEN + KKEN <= 1440
5) AJOHN + BJOHN + CJOHN + DJOHN + EJOHN + FJOHN + GJOHN
+ HJOHN + IJOHN + JJOHN + KJOHN <= 1440
6} APAUL + BPAUL + CPAUL + DPAUL + EPAUL + FPAUL + GPAUL
+ HPAUL + IPAUL + JPAUL + KPAUL <= 1440
71} ARANDY + BRANDY + CRANDY + DRANDY + ERANDY + FRANDY
+ GRANDY + HERANDY + IRANDY + JRANDY + KRANDY <= 1440
B} 0.93 ASAM + ASTEVE + 1.27 AKEN + 0.53 AJOHN
+ 0.93 APAUL + 0.93 ARANDY »= 320
91} 0.91 BSAM + 0.98 BSTEVE + 1.3 BKEN + 0.98 BJOHN
+ 0.91 BPAUL + 0.91 BRANDY >= 480
10) 0.9 CSAM + 0.97 CSTEVE + 1.29 CKEN + 0.97 CJOHN
+ 0.9 CPAUL + 0.97 CRANDY >= 160
11) 0.89 DSAM + 0.96 DSTEVE + 1.28 DKEN + 0.96 DJOHN
+ 0.96 DPAUL 4+ 0.96 DRANDY >= 160
12) 0.94 ESAM + 0.94 ESTEVE 4+ 1.29 EKEN 4+ 0.94 EJOHN
+ 0.94 EPAUL + 0.94 ERANDY >= Se60
133 0.95 FS5AM + 0,95 FSTEVE + 1.23 FKEN + 0.95 FJOHN
+ 0.95 FPAUL + 0.95 FRANDY >= 320
14) 0.97 GSAM + 0.97 GSTEVE + 1.23 GKEN + 0.97 GJOHN
+ 0.9 GPAUL + 0.97 GRANDY >= 1600
106 0.98 HEAM + 0.983 HSTEVE + 1.28 HKEM + 0.98 HJOHN
+ 0.91 HPAUL + 0.91 HRANDY »>= 2400
16} 1.01 ISAM + 0.94 ISTEVE + 1.23 IKEN + 0.94 IJOHN
+ 0.94 IPAUL + 0.94 IRANDY >= 320
17} 0.91 JSAM + 0.98 JSTEVE + 1.3 JKEW + 0.91 JJOHN
+ 0.91 JPAUL + 0.98 JRANDY >= BOO
18) 0.95 KSAM + 0.95 KSTEVE + 1.3 KKEN + 0.95 XKJOHN
+ 0.89 KPAUL + 0.95 KRAMNDY »>= 200

FIGURE 7 (Cont.).
LINDO OUTFUT

o OPTIMUM FOUND AT ETEP 22

OBJECTIVE FUNCTION VALUE

i35 7429.667387
VARIABLE VALUE REDUCED COST
ASAM 0.000000 0.070000
BSAM 0.000000 0.0714320
C5AM g.000000 0.07451¢6
DSAM 0.000000 0.077649
ESAM 0.000000 0.033383
FS5AM 0.000000 0.000000
G5 AM 1025.811040 0.000000
HSAM 0.000000 0.o000001
ISAM 316,831787 0.000000
JSAM 0.000000 0.071429
KSAM 0.000000 0.030615
ASTEVE 320.000000 g.o00000
BSTEVE 0.000000 0.000001
CSTEVE 0.000000 0.002534
DSTEVE 0.000000 0.005104
ESTEVE 0.000000 0.033383
FSTEVE 9. BE3 580 0.000000
GSTEVE o.000000 0.000000
HSTEVE 1110.186280 0.000000
ISTEVE 0.000000 0.069306
JSTEVE 0.000000 0.000000
KSTEVE 0.000000 0.030614
AKEN ¢.000000 0.056529
BEKEN 2529368523 0.000000
CKEN 124.031006 0.000000
DKEN 125.000015 0.000000
EKEN 744.186035 0.000000
FKEN 0.000000 0.031792
GHKEN 0.000000 0.058488
HKEN 0.000000 0.040815
IKEN o.oo00000 0.108706
JKEN 0.000000 -0.000001
KKEN 153.846237 g.oo0000
AJOHN 0.000000 0.070000
BJOHN 101.206711 0.000000
CJOHN 0.000000 0.002533
DJOHN 0.000000 0.005104
EJOHN 0.000000 0.033383
FJOHN 0.000000 0.000000
GJOHN 0.000000 0.000000
HJOHN 1338.793210 0.000000
1JOHN 0.000000 0.069306
JJOHN 0.000000 0.07142%
KJOHN 0.000000 0.030614
APAUL 0.000000 0.070000
BPAUL 0.000000 0.071430
CPAUL g.000000 0.07451¢6
DPAUL 0.000000 0.005105
EPAUL 0.000000 0.033383
FPAUL 327.028320 g.000000

GPAUL
HPAUL
TPAUL
JPAUL
KPAUL
ARANDY
BRANDY
CRANDY
DRANDY
ERANDY
FRANDY
GRANDY
HREANDY
IRANDY
JRANDY
KRANDY

ROW
2)
3)
4)
5)
&)
T3
8)
9)

10)

11]

12

3]

14)

15)

16}

L)

18)

FIGURE 7 (Cont.).
LINDO OUTPUT

0.000000 D.072165
0.000000 0.071423
0.000000 0.069306
0.000000 0.071429
0.ooo0o000 0.091839
0.000000 0.070000
0.000000 0,071430
0.000000 0.002534
0.000000 0.005104
0.000000 0.033383
0.000000 0.000000
B23.673340 0.000000
0.000000 0.071429
0.000000 0.06930¢6
81e.326416 0.o000000
0.000000 0.030614
SLACK OR SURPLUS DUAL PRICES
87.356534 g.000000
0.000000 0.000000
0.000000 0.326528
0.000000 -0.000001
1112.571440 0.000000
0.00000C0 g.000000
0.000000 =1.000000
0.000000 =1.D20407
g.000000 -1.028316
0.000000 -1.036349
G.000000 -1.02831%
0.000000 -1.052631
¢.000000 -1.030528
0.000000 -1.020408
0.000000 —0. 990100
0.000000 -1.020408
0.o000000 -1.020408
22

NO. ITERATIONS=

RANGES IN WHICH THE BASIS IS5 UNCHANGED:

VARIAELE

ASAM
BSAM
C5AM
DSAM
ES5AM
FEAM
GSAM
HSAM
I5AM
JSAM
KS5AM
ASTEVE

el ol ol ol el =l S S e

CURRENT
COEF
.000000
.oooooo
.000000
.00000o
.0o00000
.oooooo
.aooooo
.gooooo
.000000
-000000
.000000
.000000

OBJ COEFFICIENT RANGES

ALLOWAELE

INCREASE
INFINITY
INFINITY
INFINITY
INFINITY
INFINITY
INFINITY

-0.000001
INFINITY
0.074467
INFINITY
INFINITY
0.044511

ALLOWABLE
DECREASE

EFOoOOHEOOOOo O OO O

070000
071430
074516
0776483
IS8 3
.00D0o00
.0ooooo
.00oo01
.0ooooo
.071429
.030615
.000000

BSTEVE
ZSTEVE
DSTEVE
ESTEVE
FSTEVE
GETEVE
HSTEVE
ISTEVE
JSTEVE
KSTEVE
AKEN
EKEN
CKEN
DKEN
EKEN
FKEN
GHKEN
HEKEN
IKEN
JEKEN
KKEN
AJOHN
BJOHN
CJOHN
DJOHN
EJOHN
FJOHN
GJOHN
HJOHN
IJOHN
JJOHN
KJOHN
APAUL
BPAUL
CPAUL
DPAUL
EPAUL
FPAUL
GPAUL
HEAUL
IPAUL
JPAUL
KPAUL
ARANDY
BRANDY
CRANDY
DRANDY
ERANDY
FRANDY
GRANDY
HEANDY
IRANDY
JRANDY
KRANDY

N = S =

-

U P T PRSI W PRSI T PR gy gy oy R Sy P SRR SR P SRRy S Sy S S S S R S e e e

000000

.000000
.oooooo
.000000

gooooo

.000000
. 000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.oooooo
.0ooooon
. 000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.0ooooo
.000000
.000000
.000000
000000
.000000
.0oo000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
. 000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

FIGURE 7 (Cont.).
LINDO QUTEUT

INFINITY
INFINITY
INFINITY
INFINITY
-0.000001
INFINITY
0.000001
INFINITY
INFINITY
INFINITY
INFINITY
-0,000001
0.003369
0.006806
0.045813
INFINITY
INFINITY
INFINITY
INFINITY
INFINITY
0.041893
INFINITY
0.000001
INFINITY
INFINITY
INFINITY
INFINITY
INFINITY
-0.000001
INFINITY
INFINITY
INFINITY
INFINITY
INFINITY
INFINITY
INFINITY
INFINITY
0.o0o00000
INFINITY
INFINITY
INFINITY
INFINITY
INFINITY
INFINITY
INFINITY
INFINITY
INFINITY
INFINITY
INFINITY
0.000000
INFINITY
INFINITY
-0.000001
INFINITY

]

OROOoOOCOOCOCOoO0O0O00O00DO 00000 DOoO0 0000000 HOODOoDOHKHHNODODOODOOOOOOO

.000001
002534
.005104
A33383
.000001
.oooooo
.000001
.0693086
.000000
.030614
. 056529
.003369
32652
326527
.326527
031752
.058488
.040815
.108706
.000001
- 326527
.070000
.000001
.002533
.005104
.033383
.000000
.0ooo00
.000001
.069306
.071429
.030614
.070000
.071430
.074516
- BOELDS
.033383
.000001
072165
.071429%
.069306
.071429
.031833
.070000
.071430
.002534
.005104
B L
.Dooo00o0
000001
071423
.069306
.000000
.030614

ROW

CUREENT

1440.
1440.
1440.
1440.
1440.
1440,
320,
480,
160.
1e0.
960 .
320.
1600.
2400.
20,
800,
200,

THE TAELEAU

ROW
L

2
3
4
5
&
7
8

9
10
11
L
13
14
15
16
e,
18

el
o
O W =] O e W X

'_I-

(BASIS)
ART
SLK 2
FSTEVE
BKEN
HJOHN
SLK &
GRANDY
ASTEVE
BJOHN
CKEN
DKEN
EKEN
FPAUL
GEAM
HSTEVE
I1S5AaM
JRANDY
KKEN

RHS5
000000
000000
000000
oooooo
000000
000000
oooooo
aooooo
agooooo
000000
gooooo
000000
000000
000000
000000
oooooo
oooooo

1

cocoocooooDocooDoCcoDoOkEo

ESAM

0.033
L.000
=0.867
i 5 5
-0.96%7
-0.567
g.o00
0.000
0.967
g0.000

1

cooookRRrROooOoPRPOo

FIGURE 7 (Cont.).
LINDO OUTPUT

RIGHTHAND SIDE RANGES

ASAM
.070
.000
s 3 30
.000
.000
.930
.000
.930
.000
.000
.000
.000
.930
.000
.000
.000
.000
.000

FSAM
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

ALLOWAELE

INCREASE
INFINITY

327.028B320
76.
327.028320

294342

INFINITY

1025.
.813583
.617321
543345
.469366
.543345

oD oo oD o oSO 0O0D

cooooDoOooOoo

000
.0o0o
.000
.0oo0
.0o00
.000
.000
.000
.0oo
.000

811040

323000

436234
T S
. 330429
.409836
617321

BSAM
.071 0.
.000 :
. d&3 =i,
000 -D.
923 =gk
928 -0.
000
.000
3320
.000
.000
.0oo
S
.000
9729
000
.000
.aoo

Lo B o o Y o I o o I e Y o L v Y o e e

GSAM

cCoOooQHOoOOCOHKEOD

ALLOWAEBLE
DECREASE
iz F N s T
9.813589
T .397943
9.813589
1112.971440
97.356934
320.000000
99.182617
98.419708
97.656769
98.419708
310.676758
995.036865
320.487793
315,956 T56
B00.000244
99.182617
CSAM DSAM
Q75 D.o078
000 1.000
5 G 1 P B
698 -0.695
925 =i, 52
925 =il 933
000 0.000
L000 0.000
« S5 g.922
598 0.000
.000 0,695
.000 0.000
RE PP 0.922
.000 0.000
AEH 0.922
000 0.000
000 0.000
000 0.000
HSAM ISAM
000 0.000
.000 0.000
L0000 0.000
.000 0.000
.000 0.000
000 ¢.000
000 0.000
000 0c.000
000 0.000
000 0.000

11
12
i3
14
15
16
17
18

oo oooooDoocooCCo oo oo

oo o oo

CODOoOOoODOoOOoOOoO OO

cDCoOLOoO0o o oo

.000
<o
987
.000
.967
.000
.000
.000

JSAM

<DL
<ATL
.000
.000
.000
.000
L
.000
000
.000
.000
.000
.000
- 23
.000
.000
528
.000

DSTEVE

. BES5
.000
005
. 150
LS
.005
.000
000
2N
.000
o T
.000
005
.000
.3995
000
.000
000

Lo T I e T o e I s R v 0 e B o B B e B o L

cCooooHOO

[T e T e O T e o I e o Y i o o

.000
000
000
.000
.000
.000
.000
.000

KSAM

e
.000
«J63
i
« 962
<53
.000
.000
+2639
.000
.000
.000
+ 53
.000
+ES
.000
.000
A2 s

ESTEVE

H33
.000
<033
sz
.967
SE3
L.000
.000
967
.000
.000
;129
B33
.000
.967
.000
.000
.000

FIGURE 7 (Cont.}.
LINDO OUTPUT

ocoooHOOoOQ

ASTEVE
.oon
000
.000
.000
000
-000
000
.000
.000
.000
.000
.000
000
.000
.000
000
000
000

OO OO HHOODODOoOOO

FETEVE
000
.000
.000
.000
000
.000
.000
.000
.00o
.000
.000
.0oo
. 000
.000
.000
. 000
.000
000

OO0 oDo oD oo oD oo ORFEOO

.000
.000
.000
.000
.000
.000
.000
.000

CDCOoOoOROoOOoOOOOOHOOOHOOD

OO DDOoOHMNODOoOOOOOOoORrROoODOR

coOoPHPOMHOO

BSTEVE
0,
0.
.000
000
.000
-.0oo0
.000
.000
.000
.000
.ooo
.000
000
.000
.000
.0oo
.000
000

GSTEVE
0.
=ias
.000
.000
.000
000
.000
000
.000
000
.000
.ooo
.Q00
Q00
.000
.00o
000
.000

.000
.000
.000
.000
.000
.000
.000
.000

ooo
aoo

000
aoo

Lo o Y e o I Y s e Y o o Y o Y o

i {8
0.
0
0.
0.
1.
0.
Iy,

000
Qoo
0oo
000
0oo
ooo
000
oono

CSTEVE

.003
.000
.003
132
- 397
. 003
.000
.000
el
« T2
.000
. 000
.003
.000
B
.000
.000
.000

HSTEVE

OO OoDOOOOODOoO 00O Oo

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

W =] O W L B R

OO0 OMHOOODOCOOROOI-

cooOoFOoODOOHFROOO

ISTEVE
0.
=1
.000
. 000
.000
.000
.000
. DOD
Qoo
.000
.000
000
.000
000
.000
<931
000
.000

COOoODDOODOo0OMHOOOOOOOO D00

0e9
9531

CKEN
.000
.000
000
Q00
.0oo
.000
.000
.000
.000
.000
.000
000
. 000
.000
.0oo0
.000
.000
. 000

HKEN
.041
. 000
.041
. 000
o BT
.041
000
. 000
327
.000
.0o0o0
000

JSTEVE

0.
=l

1.

0.
.000
000
000
.000
.0oo
.000
.000
000
.0oo
.000
.0oo0
.000
.000
.000

QrPOoOORMHOOODCOOHMEDOD

CODOoODOoOOHOODOOoOOoOOoOOD

OO OO M=

ooo
aoo
ooo
ooo

DKEN

.000
.000
000
.000
000
.000
.000
.000
.000
.ooo
000
.000
.000
.000
.000
.000
000
.000

IKEN

.109
.218
327
.000
327
.327
.000
.000
327
.000
.000
.000

FIGURE 7 (Cont.

LINDO OUTPUT

(o B e B e O o B o B o e (N o O v L o Y o B o o |

|

DOORORRPRRFEO

KSTEVE

OO OOO OO0 OO0 000

.03L
.000
.031
T 8
.969
.031
.000
.000
L9580

-

ono

.000
.000
031
.000
. 969
.000
.000
o

EKEN

.000
LB00
000D
.000
.000
.000
.nog
. 000
.0oo
.000
.000
.000
. 000
.000
.000
.000
.000
-000

JKEN

.000
- 327
. 327
.000
. 327
327
s
.000
+327
.000
.000
.000

oo OoOCOoOFRHODODHEHOOO

|
coOOoOMHOOoOOCOODHOODOHMHFMHODOD

COCOoODDOoOOoOOOoOOCo OO

AKEN

. O57
.000
.057
00D
. 327
057
. 000
. 270
y 22T
000
000
.000
. 057
.000
« 327
.000
.000
.000

FKEN

.032
.000
« 327
.000
L
.032
.000
.000
327
.000
.000
.000
032
.000
32T
.000
.000
.000

KKEN

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.0oo

a.
0.
0.
1
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

0.
=3,
E.

BEKEN
000
000
gaao
oo
000
ooo
000
000
000
o000
000
000
000
000
000
goo
000
000

GKEN

058
268
327

1.000

1.
1.
0.
0.
=il .
ﬂ.
0.
0.
=1
1.
=y
0.
0.
ﬂt

oo e e e) e) e e B) e [e o Y e]

327
327
000
000
227
ooo
ooo
000
327
268
32T
000
000
ooo

AJOHN
.070
.000
070
.000
.000
.070
.000
.930
.000
.000
.000
.000

FIGURE 7 (Cont.).
LINDO OUTPUT

13 -0.041 =3 327 -1.327 0.000 -0.070
14 0.000 0.000 1.32% g.000 0.000
15 =0.041 =X T =1 . 327 0.000 -1.000
16 0.000 1.218 0.000 0.000 0.000
17 0.000 0.000 1.327 0.000 0.000
18 0.000 0.000 0.000 1.000 0.000
ROW BJOHN CJOHN DJOHN EJOHHN FJOHN
1 0.000 0.003 0,805 0.033 0.000
2 0.000 0.000 0.000 0.000 0.000
3 D.o00 D.003 0.005 0.033 1.000
4 0.000 =0.752 -0.750 1 R 0.000
=, 0.000 0.003 0.005 0.033 1.000
6 0.000 0.003 0.005 0.033 0.000
7 0.000 0.o000 0.000 0.000 0.000
B 0.000 0.000 0.000 0.000 0.000
£l 1.000 0.937 0.985 0.967 0.000
10 0.000 B 752 0.000 0.000 0.000
11 0.000 0.000 0.750 0.000 0.000
12 0.000 0.000 0.000 0.729 0.000
13 0.000 -0.003 -0.005 =0,033 0.000
14 0.000 0.000 0.000 0.000 0.000
15 0.000 -0.003 -0.005 -0.033 -1.000
lée 0.000 0.000 0.000 0.000 0.000
17 0.000 0.000 0.000 0.000 0.000
18 0.000 0.000 0.000 g.o000 0.000
ROW GJOHHN HJOHN IJOHN JJOHN KJOHN
1 0.000 0.000 0.069 0.071 0.031
2 -1.000 0.000 gl 58 1275 = B2 3 0.000
3 1.000 0.000 1.000 1.000 0.031
4 g.000 0.000 0.000 0.000 i |
5 1.000 1.000 1.000 1.000 0.031
] 1.000 g0.000 1.000 1.000 0.031
7 0.000 0.000 0.000 g [[0.000
8 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 0.000 0.9689
10 0.000 g.000 0.000 0.000 0.000
il 0.000 0.000 0.000 0.000 0.000
12 g.000 0.000 0.000 0.000 0.000
23 -1.000 0.000 -1.000 -1.000 =0.031
14 1.000 0.000 0.000 Dao2n 0.000
15 -1.000 g.o000 -1,000 -1.000 =083
16 0.000 0.000 0,231 0.000 0.000
17 0.000 0.000 0.000 g.929 0.000
18 0.000 0.000 0.000 0.000 0.731
ROW APAUL EPAUL CPAUL DEAUL EPAUL
1 0.070 0.071 0.075 0.005 0.033
2 0.000 0.000 0.000 0.000 0.000
3 =500 -0.529 -0.925 =0.5935 =0.967
4 0.000 0.000 -0.698 =0.750 -0.729

o
o
z

LYo S B = AR B PV N

e
e o
B O W@] O N W E

N e
=] O N o L)

cOoOoccoOooooOOooCcoOOo o

0
0
0
0

OO0 OFOODOCOODOO0D

o e I e [o [e e e e e e [e e

.000
.070
000
. 930
.000
.000
.000
000
« T30
.000
.000
000
.000
000

FPAUL
.000
.000
.000
.000
.000
000
.000
.000
000
000
.000
.000
.ooo
-ooo
.000
000
.000
.000

KPAUL
.092
.000
.908
685
.908
.092
.000
-.000
.308
000
.000
.000
.908
000
.508
.000
-.000

coooooooODo0ooOo oo oo

OO OO O Do o OO OOO O

<35
071
.000
.000
- 928
.000
.000
.000
<229
.000
925
.000
.000
.000

GPAUL
w2
928
.000
.000
.000
.000
000
.000
.0oo
.000
000
.00o0
.000
. 928
000
.000
.000
.000

ARANDY

0

I

070
goo

-0.930

CcCoOOoOrHPOODOOOoOORROOO

.000
.000
«930
.000
.330
.000
.000
.000
.000
.930
.000
.000
.000
000

FIGURE 7 (Cont.).
LINDO OUTPUT

CcCOoOoDoDooDobboo oo

oo e Y e [N e [e e o e e e Y e e [

COOoOFHOOoODOoODOOO M

9215
TS
.000
.000
-925
.698
.000
.000
e
.000
« L
.000
.000
.000

HPAUL
071
.000
. 929
.000
.000
e
.000
.000
.000
.000
.000
.000
SR

BRANDY

0.
l.
0.
.

a
0

071
000
923
000
. 329
.329
.000
.000
<329
.000
.000
.000
.929
.000
929
.000
.000

CO0OoOQOOoOOOoOOoOOoODOOoO0

0

<385
. 085
.000
.000
<395
.000
. 750
.000
395
.000
Sl
.000
.000
.000

IPAUL
+069

=@.931

oo HODOoODOoOOoOOoOOoOKE

0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0

.000
.000
.000
.000
.000
.000
.000
000
.000
.000
.000
.000
.000
2l
.000
.000

CRANDY

0.
F
0.
0.
0.
0.

003
goo
337
b o
£97
557
.000
.000
997
. 752
.000
.000
<387
.000
«997
.000
.000

oo oo

o B e [e e O e . [e e e e o e o [o e e

D

0.

cCoOoMFOoODDOOD

967
D33
.000
.000
.967
.000
.000
-T29
.967
.000
967
.000
.000
. 000

JPAUL
1
e frac
.0oo
.000
.000
.0o0
. 9:29
.000
.00
000
.0oo
000
.00o0
«9323
.ooo
.0oo
- 928
.000

RANDY
005
. 000
. 9895
« 750
995
995
.000
.000
<995
.000
. 750
-000
<595
.000
o
.000
.0oo

(=
[#a]

o
=
EH

W oo -1 N ke L b

m
o
X

MO0~ On N s L D

a
)
x

L¥ s RS R T I FN N N

0.685

ERANDY

0.033
1.000
=0.967
=, T29
-0.9867
=0 26T
1.000
0.000
D.967
0.000
0.000
0.725%
0.967
-=1.000
0.967
0.000
0.000
0.000

JRANDY

0.ao0
0.000
0.000
.000
.000
.000
.000
.000
.0ao
.0oo
.000
.000
-.000
000
-.000
000

e R s [o e o e T o R e o o e o

[5]
P
=

DCoCOoOMHHO=OO
L=
o
(=

5

FIGURE 7 (Cont.).
LINDO QUTPUT

0.000 0.000
FRANDY GRANDY
0.000 0.000
1.000 0.000
0.000 0.000
D.000 0.000
0.000 0.000
-1.000 0.000
1,000 1.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
1.000 0.000
-1.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000

KRANDY SLK
0.031
1.060
-0.969
-0.731
-0.969
-0.969
1.000
0.000
0.969
0.000
0.000
0.000
0.969
-1.000
0.969
0.000
0.000
0,731

=1 o I e B o O e B o Y e B e N e B e Y i e I e o e O o B

SLK &€ SL
0.000
0.000
0.000
0.000
0.000
1.000
0.000
0.000
¢.000

cCoOoOrHroDoOoOOokKHOR

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

.0oo
.000
.000
.000
000
.0oo
.000
.000
000

0.000

HRANDY

0.071
1.000
-0.929
.000
.000
228
.000
.000
000
.000
.000
.000
+ 329
000
229
.000
.000
.000

CO0COoOHOoODOOCOOCOHOOD

SLK

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

COoODOoOOHOOODCOOHOODKOO

SLK

1.000
.000
000

.0oo
000
. 000
-1.000

0.000

Lo T e B T e

o

.000 -

0.

000

IRANDY

CODOrHrOoOO0OOD OO OoO OO DOOoOD

4]
E
=

[
COOFROFOOOROORRRERDO

"
|
-

H OO OO

.069
.069
.000
.000
.000
000
000
. 000
. 000
.000
.000
.000
000
.0oo
.0oo
93]
.000
.000

32y
.000
w27
000
327
o2y
.000
.000
327
.000
.000
.000
. 327
.000
. R
.000
.000
. 000

.020
000
-020
000
020
.020
-.0oo
.0oo0
.020

10
11
12
13
14
15
lé
17
ls

a
=
£

WO D -3 O oUn b L B

=
o
x

W ofo -] TN N ks LJ B

OOk OEoDDOOo

| 11

OO HOFHOOOOHEHOOMKEDKEOI

m
o
-

COOHOHOOOOOOKKOOKE O
-

.000
. 000
000
.000
. 000
000
.000
. 000
.000

10
028
. 00D
.028
M7 5 v
.028
.028
.000
000
.028
i
.000
.000
.028
.000
028
.000
.000
000

15

L }
%]
o

.000
.020
.000
000
.020
000
.000
000
. 000
.000
.000
. 020
.000
. 020
.000
000
080

o o T s e Y e R e e e

17|
=

I

CCoOO0OHPOoOMHRPOoOOOROOHPKHPOHOM

m
E!
=

CODCOoO000DOoOOO0OOCOoO0DOoO OO OO0

.000
.000
.000
.000
.000
.000
.000
.000
.000

11
036
.000
.036
781
.0386
038
.000
.000
.036
.000
«+ 781
.000
.036
.000
036
.000
.000
.000

16
.990
990
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.950
. 000
.000

OO OOoDOO

W
e
-

oo OOOMHFODODHKEOEDM

m
e
-~

OHOQHODOOODOOMFOOOOKKME

.000
. 000
.000
000
000
.000
.000
.000
000

12
.028
.000
.028
.7175
.028
.028
.000
.000
.028
.000
.000
- TT5
.D28
.000
.028
.000
.000
.000

37
.020
.020
.000
.000
.000
.000
.020
.000
.000
.000
.000
.000
.000
.020
.000
.000
. D20
.000

.000
.000
.000
.000
.000
.000
.000
.000
.000

cCoDOoOOoOPkPoOo

1s]
|
-

853
.000
.000
.000
.000
. 053
.000
.000
.000
.000
.000
.000
+053
.000
.000
.0090
.000
.000

COQOoOOHOODODOODOoOOFRPROOODOM

n
| o
-

ODOoOHOFHODOOFOOFFEHDODEORK

FIGURE 7 (Cont.).
LINDO

ScookHoESoOoa

13

L75]
B
-

CcCoOocoRPRPOoCOoDD OO DOoOOoOOoORKE

18

L020 -T7429,
.000 = B
.020 9.
. 169 292,
L0 1338,
020 1113,
.000 623.
. 000 220,
LOZ0 B
000 124.
.000 125.
.000 744,
020 327
.000 1025.
w20 3118,
.000 316,
.00D 8lb.
769 153,

.000
.000
.000
.020
.000
.020
.000
.000
-ooo

14

a3
031
.000
.000
.000
.000
.000
. 000
000
.000
-0oo
.goo
.000
.031
. 000
000
.0oo
.000

668
357
Bl4
937
793
971
673
000
207
031
000
186

.028

811
186
832
32¢6
846

APPENDIX A.

SOFTWARE SUMMARY

Data preparation for this project was completed with the
use of three pascal routines. These routines started
with three input matrices: the Skills Matrix, the
Functions Matrix, and the Tasks Matrix. The programs
convert these matrices inte the Linear programming model
used as input into the LINDO software package on the
Portland State University computer system. These
routines, LPM, LPM2, and FILEPREP, are described below.
In addition, a sample input file has been included for
reference.

PROGRAM LPM:

This program formulates the efficlency matrix from
the skillls, function, and tasks matrices. Input is
from file INPUT.DAT. See sample file for format. The
output is in INPUT.LPM, which is used as input to
LPM2.COM. The output contains the number of
engineers and tasks, the engineer names, the task
names, efficiency matrix, engineer time matrlix, and
the task time matrix.

PROGRAM LPMZ:

This program inputs the number of engineers and
tasks, the engineer names, the task names, efficiency
matrix, engineer time matrix, and the task time
matrix. Input is taken from file INPUT.LPM.

The C matrix is calculated and then the LINDD form of

the Linear Programming Model is cutputed to file
OUTPUT.LPH.

The output is then further formatted by the
program FILEPREP.COM.

PROGRAM FILEPREP:

This program reformats the "OUTPUT.LPH" file to ensure
that it has B0 bytes in each line. This is a
requirement for input using the TAKE command in

LINDD. The output is written to READY.LPM. This is

the file transferred to the Portland State University
computer system.

PROGRAM LPM(INFILE,OUTFILE]);

{ This program formulates the efficiency matrix from the }
{ =skills, function, and tasks matrices. KS 6/5/88 3
{ Input: INPUT.DAT {see sample file for format) b
f oOutput: INPUT.LPM fused as input to LPFM2.CCH) }

The output contains the number of engineers }

and tasks, the engineer names, the task names,}
i efficiency matrix, engineer time matrix, and 1}
{ the task time matrix. 1

CONST

MAXEL = 20;

TYPE
NAME = STRINGI[15]1;
MNAME = ARRAY [1..MAXEL] OF NAME;
MATVAR1 = ARRAY [1l..MAXEL] OF REAL;
MATVAR2 = ARRAY [1l..MAXEL,1..MAXEL] OF REAL;
VAR
INFILE,OUTFILE : TEXT;
SKILLNM,ENGNM, FUNCTNM, TASKNM : MNAME;
SKILL,FUNCT, TASK,RESULT : MATVARZ;
ETIME,TTIME : MATVAR];

NSKILL,NFUNCT,NTASK ,NENG,I,J : INTEGER;

PROCEDURE GET_NAME(N : INTEGER;
VAR MATNM : HMNAME };
VAR
T : INTEGER;
BEGIN

FOR I:=1 TO N DO
READLN (INFILE,MATNMI[I]);

END;
PROCEDURE GET_MATRIX1 (N : INTEGER;
VAR MATRIX : MATVARL);
VAR
I : INTEGER;
BEGIN

FOR I:=1 TO N DO

READ (INFILE,MATRIXI[I]);
END;

PROCEDURE GET_MATRIX2Z (R,C : INTEGER;

VAR MATRIX : MATVAR2);
VAR

T.d : INTEGER;
BEGIN

FOR I:=1 TO R DO
FOR J:=1 TD C DD
READ (INFILE,MATRIXI[I,J]);
END;

PROCEDURE GET_DATA;

BEGIN

READLN (INFILE,NSKILL,NENG,NFUNCT,NTASK);
GET_MNAME (NENG,ENGNM]);

GET_NAME (NTASEK,TASKNM);

GET_MATRIXZ (NENG,NSKILL,SKILL);
GET_MATRIXZ (NSKILL,NFUNCT,FUNCT);
GET_MATRIXZ (NFUNCT,NTASK, TASK]);
GET_MATRIX1 (NENG,ETIME);

GET_MATRIX1l (NTASK,TTIME);

END;
PROCEDURE MATRIX_MULT (X,Y : MATVARZ;
XROW, XCOL, YCOL : INTEGER;
VAR R : MATVARZ);
VAR
3 W 2 : INTEGER;
BEGIN

FOR I:=1 TO XROW DO
FOR J:=1 TO YCOL DO

BEGIN
RLI ;3] = 0;
FOR K := 1 TO XCOL DO
RII,J] := RII,J)+X[I,K)1*Y([K,J});
END;
END;
PROCEDURE MATRIX_NORM (X : MATVARZ2;
XROW, XCOL : INTEGER;
VAR R : MATVARZ);
VAR
I,d,K : INTEGER;
SUM : REAL;
BEGIN

SUM:=0;

FOR J:=
SUM:=
FOR I:=1
FOR J:=
RET,d
END;

PROCEDURE DU

VAR
1.3

BEGIN
WEITELMN (

FOR I:=1
WRITELN
FOR I:=1
WRITELN

FOR I:=1

BEGIN
WRITE
FOR J:=

WRITE

WRITELHN

END;

FOR I:=1
WRITELN

FOR I:=1
WRITELN

END;

BEGIN

ASSIGN (INF
ASSIGN (OUT
REESET (INFI
REWRITE (0OU

GET_DATA;

MATRIX_NORM
MATRIX_NORM
MATRIX_NOEM

MATRIX_MULT
MATRIX_NOEM
MATRIX_MULT
MATRIX NORM
DUMP_MATRIX

1 TO XCOL DO
SUM+XI[1,J3];

TO XROW DO

1 TO XCOL DO
1:=X[1,J])/8UM;

MP_MATRIX (X

R, C

INTEGER;
OUTFILE,NENG,' ',NTASK);
TO R DO
(OUTFILE,ENGNMII]);
T0 C DO

{OUTFILE, TASKNMII)};
TO R DO

OUTFILE,%[(I,11%100.0:5:2);
2 TO C DO

{OUTFILE,' ',XI[I,J1*100.0:5:2);
(OUTFILE);

TQO R DO
(OUTFILE,ETIME[I]);

T £ DO

(OUTFILE,TTIME[I]);

ILE, 'INPUT.DAT"');
FILE, 'INPUT.LPM'};
LE);

TFILE);

(SKILL,NENG,NSKILL,SKILL);
(FUNCT,NSKILL,NFUNCT, FUNCT) ;
(TASK,NFUNCT,NTASK, TASK);

MATVARZ;
INTEGER) ;

(SKILL,FUNCT,NENG,NSKILL, NFUNCT ,RESULT) ;

(RESULT,NENG,NFUNCT,RESULT);

(RESULT, TASK, NENG, NFUNCT, NTASK , RESULT) ;

(RESULT,NENG, NTASK , RESULT) ;
(RESULT,NENG, NTASK) ;

CLOSE (INFILE);

CLOSE (OQUTF

ILE);

END.

PROGRAM LPMZ(INFILE,LPM);

{

This program inputs the number of engineers and
the number of tasks. Then inputs the names of
the engineers and the tasks. Following this, the
Efficiency matrix is inputed along with the
engineer time and task time matrices.

The C matrix is calculated and then the LINDO form
of the Linear Programming Model is cutputed.

The output is then further formatted by the
program FILEPREP.COM.

Input: INPUT,LPM
Qutput: QUTPUT.LPM {used as input to FILEPREP.COM)

VAR
INFILE,LPM, CHATRIX : TEXT;
NENG, NTASK : INTEGER;

PTNCEDURE GO;

TYFE
NAME = STRING[15];
ENAME = ARRAY [1..20] OF MAME;
THAME = ARRAY [1..20] OF NAME;
TEMATVAR ARRAY [1,..20] OF REAL;

TTHMATVAR = ARRAY [1l..20] OF REAL;

MATVAR2 = ARRAY [1..20,1..20] OF REAL;
VAR
ENGNM ENAME ;
TASKNM TNAME;
TASK, RESULT MATVAR?2;
ETIME TEMATVAR ;
TTIME TTMATVAR ;
INTEGER;
SUM REAL;
BEGIN
BEGIN

FOR I:=1 TO NENG DO
BEGIN

READLN [INFLILE,ENGNMLL]);
END;

END;
BEGIN

FOR I:=1 TO NTASK DO

BEGIN

READLN (INFILE,TASKNMII]);
END;

END;
BEGIN

FOR I:=1 TO NENG DO
FOR J:=1 TO NTASK DO

BEGIN
READ (INFILE,TASKI[I,J]1);
END;
END;
BEGIN
FOR I:=1 TO NENG DO
BEGIN
READ (INFILE,ETIMEI[I]);
END;
END;
BEGIN
FOR I:=1 TO NTASK DO
BEGIN
READ (INFILE,TTIMEII));
END;
END;
BEGIHN

FOR I:=1 TO WTASK DC

BEGIN

SUM := 0;

FOR J:=1 TO NENG DO

SUM:=5UM+TASKI[J,I];
FOR J:=1 TO WENG DO
RESULTI(J,I):=TASK[J,I]/(SUM/NENG]);
END;
END;

WRITE (LPM, 'MIN ', TASKNM[1),ENGNM[1]);
FOR I:=1 TO NENG DO
BEGIN
FOR J:=1 TO WTASK DO
IF NOT((I=1) AND (J=1)) THEN
BEGIN
IF ((((I-1)*NENG)+J) MOD 4)=0 THEN WRITELN
WRITE (LPM,'+',TASKNM[J),ENGNM[I]);
END;
END;
WRITELN (LPM);

(LPM) ;

WHLITELN (LPM, 'S'Y");

FOR I:=1 TO NENG DO

BEGIN

WRITE (LPM,TASKNM[1],ENGNM[I]);

FOR J:=2 TO NTASK DO
BEGIN
IF (J MOD 4)=0 THEN WRITELN (LPM});
WRITE (LPM,'+',TASKNM[(J],ENGNM[I)]);
END;

WRITELN (LPM,' < ',ETIME[I1:8:2);
END;

FOR J:=1 TO NTASK DO
BEGIHN
WRITE (LPM,RESULT[1,J]):5:2,TASKNMI[J],ENGNMIL1]);
FOR I:=2 TO HENG DO
BEGIN
IF (I MOD 4)=0 THEN WRITELN (LPFM});
WRITE (LPM,'+', RESULTII,J):5:2,TASKNM[J],ENGNMI[I]);
END;
WRITELN (LPM,' > ',TTIME[J]:8:2);
END;
WRITELN (LPM,'END'};
WRITELN (LEM,'LEAVE’};

END;

BEGIN

ASS5IGN (INFILE,'INPUT.LPH']);
ASSIGN (LPM, 'OUTPUT.LPM');
RESET (INFILE];

REWRITE (LPM);

READLN (INFILE,NENG,NTASK]);
GO;

CLOSE (INFILE);

CLOSE (LPM);

EHND.

PROGRAM FILEFREP (INFILE,QUTFILE);

VAR
CH
INFIL
OUTFI
COUNT

BEGIN
ASS51
ASSI

This program reformats the "OUTPUT.LPH" file to
ensure that it has 80 bytes in each line. This
is a requirement for input using the TAKE command
in LINDO. The output is in READY.LPM. This is
the file transferred to the Portland State
University computer system.

: CHAR;

E ¢ TEXT;

LE : TEXT;
INTEGER;

GN (INFILE, 'QUTPUT.LEM'];
GN (CUTFILE, 'READY.LPM'};

RESET (INFILE);

REWRITE (OUTFILE);

WHILE NOT EOQF(INFILE) DO
BEGIN

COUNT:=0;
WHILE NOT EOLN(INFILE) DO
BEGIN
READ(INFILE,CH);
WRITE(OUTFILE,CH);
COUNT : =COUNT+1;

END;
WHILE COUNT<80 DO
BEGIN
WRITE (OUTFILE,' ');
COUNT : =COUNT+1;
END;

READLN(INFILE};
WRITELN(OQUTFILE};

END;
CLOSE (INFILE};
CLOSE (OUTFILE);

END.

Ot B

SAM
STEVE
KEN
JOHMN
PAUL
RANDY

b B S e e i o e O o o O o s e

2.30
2000
i3
1.2
1.44
2.

el
1.85
1.58
e a3
0 oE3
2kl
e
1.32
£ 30

i Bk
D.50
0.00
0.00
0.00
0.00
0.00

1a40
1440
1440
1440
1440
1440

11

1.15
1 4ES
2.59
Z.01
2.0}
2.30

1.85
1.58
1,85
Li3d
T
1.58
1.85
1.32
L. 85

4,50
4,50
0.00
0.00
0.0d0
0.00
0.00

NOTE:

1,72
2.30
20
1.44
2 o
o0l

E.BS
1332
&l
1.85
.85
1.85
1.06
1.85%
l.086

2308
B3l
0.00
0.00
0.00
a.o00
0.00

SAMPLE INPUT DATA FILE

Blank lines and comments have been added for
purposes of this example only.

s SKILLS, e ENGINEERS, £ FUNCTIONS, t TASKS)

{ENGINEER'S NAMES)

({TASK IDENTIFICATIOQNS)

Z2:30 A.7% T84 PIST 2:30 2 2.01 (5kills Matrix)
gz .72 2.5% 0:57 D.86 2,58
2.30 2.3 X9 2,30 2.59 Z.58
Z.59% Zga ko Zowd 0,57 144
230 Fnaml lodet, LR HohdT 1
28 Gk.FE Baet 2iEE 230 @57

Be33 0073 0078 237 (Functions Matrix}
053 0. 1.08 o i

T o e S 1 | P

b, . 1 | I.BE 0.53

ey ST (10 R (0 o ke

.o i) B 22T LSRR

05 GGER Rl - 40085

AR o D S 1) R L R (G L

1.06 1.86 1.58 R

0.90 0.90 0.00 0.00 0.00D 0.00 1.80 180 ({Task HMatrixj}
1.21 4.50 1.80 1.80 Q.00 ©C.00 O0.00 0.00

0.90 4.50 ¥ .80 TR 1.80 0.00 0.00 0.00

Oe, Q0 o000 SSod4E 0.AD 6031 FoEG @o0l 9eeig

0.00 0.00 O.00 0.00 .90 B 3 0.00 0.00

o.00 0.00 O0.00 G.00 0.00 O0.90 Q.00 5.41

o.00 0.00 O©.00 0,00 O0.00 O0Q.0D 7.21 1.BD

(TIME AVAILAELE FOR EACH ENGINEER)

3240
430
160
160
960
320
1600
2400
320
EOD
200

SAMPLE INPUT DATA FILE (Cont.].

(EFFECTIVE

ENGINEERING TIME REQUIRED FOR TASKS)

