

Title:Minimum Cost Shop Loading in an Investment Casting Plant

Course: Year: 1988 Author(s): G. Maffett, T. Lee and C. Hood

Report No: P88001

	ETM OFFICE USE ONLY
Report No.:	See Above
Type:	Student Project
Note:	This project is in the filing cabinet in the ETM department office.

Abstract: A linear programming model was developed to identify the optimum shop loading option and the minimum aggregate manufacturing cost from three process alternatives in a metal casting company. The study stems from the needs expressed by the Marketing, Production Planning and Engineering Departments of the company, and is based on the market research which identified a growing need for a "CNC machining blank" for the medical prosthetic implant market.

MINIMUM COST SHOP LOADING IN AN INVESTMENT CASTING PLANT

G. Maffett, T. Lee, and C. Hood

EMP - P8801

EAS 543 Dr. Dundar Kocaoglu Spring 1988

11 In

Geoff Maffett Teri Lee Cliff Hood

Minimum Cost Shop Loading in an Investment Casting Plant,

Executive Summary

The following report stems from a need generated by the Marketing, Production Planning and Engineering Departments of Precision Castparts Corp. Market research identified a growing need for a CNC machining blank for the medical prosthetic implant market. This linear programming model identifies the best shop loading option and the aggregate cost to manufacture from three process options.

The product can be made by three different processes which have different labor requirements at each process step. Since the plant is highly constrained for capacity, the efficiency of a particular process at a more highly constrained operation will introduce it into the model despite a higher net cost. Results of the analysis revealed that the cost to manufacture increases with volume produced, an undesireable situation. Required production volumes can be achieved within the current process. The optimum solution which meets market demand is :

81 molds produced by Process A 11 molds produced by Process B 9 molds produced by Process C

The above mix yields a cost to manufacture of \$59.51/piece. Marketing will have to assess the price the market will bear. Ballpark estimates of a \$75 sales price suggest adequate profit margin.

Sensitivity analysis of the impact of volume changes upon process mix revealed that Process C predominates at low volume production. When furnace #2 capacity is maximized, we would begin to make process A product in addition to process C. Upon utilization of all overtime in wax assembly, Process B product is produced at the expense of process C product. Engineering and Applied Science 543 Term Project Minimum Cost Shop loading in an Investment Casting Plant

Geoff Maffett Teri Lee Cliff Hood

I. Description of the Problem

Precision Castparts manufactures aerospace and medical prosthetic investment castings. The problem at hand involves the medical products line. The product is a hip implant machining blank which the customer will use to CNC machine a variety of custom hip shapes. Marketing forecasts have shown that the demand for the product will be at least 3,000 pieces per month. PCC has a three distinct manufacturing options to produce this product. The model has been simplified to the two major process areas where capacity limitations actually impact the model. A significantly greater number of departmental costs and capacities were considered in the original program but analysis revealed that they were really not legitimate constraints. This model balances two major operations with overtime and capacity constraints to yield the best combination of three possible processes which minimizes total cost subject to a minimum market requirement.

II. Process Option A (Variable X1) Static Pour

Option A is called the static pour process. With this method, a wax assembly is produced which will yield 20 pieces for each mold cast. The assembly time per mold and the casting time per mold are identified as 3 hrs and .3 hours respectively. The manufacturing overhead rates for the departments are incorporated into a total cost per mold to manufacture without overtime. For Option A the total overhead cost is \$1380 per mold. Advantages of this process include the low overhead rate for casting and low per piece assembly hour requirements. Disadvantages include the ineffecient gating ratio, which contributes significantly to a high per piece cost for this process.

III. Process Option B (Variable X2) Centrifugal Pour

Option B is the centrifugal casting option. This option yields more pieces per mold (48) at a higher per unit casting cost. The cost coefficient per mold produced is \$2496. The furnace time per mold is 0.6 hrs. Since options B & C have to be produced in a different and more expensive casting furnace, the cost per unit time is significantly higher for furnace #2. The assembly time for option B is 5 hours per mold. This works out to a more favorable wax assembly time per piece of 0.1 hrs/pc versus 0.15 hrs/pc for the option A product. Therefore, from a wax assembly capacity standpoint, we can produce more product within the given capacity by using process B.

IV. Process Option C (Variable X3) High Volume Pour

Option C is the frame assembly process. This method utilizes an significantly higher pc/mold technique that gets more optimum use of the #2 casting furnace. However, it is more labor intensive in the wax operations where the rate is 0.2 hrs/pc. The casting rate is 0.8 hrs for the entire mold but when divided into the 96 pieces in the assembly, this realizes a more favorable casting rate than option B. The interplay of the two operations complicates the model sufficiently that it could not be easily solved by graphical means.

V. Development of the Objective Function

The objective function required running a cost analysis for all manufacturing operations based upon standards estimated from similar product lines. The initial estimate of cost was made from an assumption that there were absolutely no capacity constraints. This involved calculation of the hrs per piece per operation multiplied by the overhead rate for each department. There was no overtime included in the cost so we added variables to address the overtime cost. The objective function was based upon the following cost factors:

> \$1380 X1= Cost per mold of Option A product \$2496 X2= " " " " B product \$4320 X3= " " " " C product \$ 8 X4= Overtime cost per hour of assembly \$ 8 x5= " " " " " investing \$ 24 x6= Cost per Frame for Option C product

Note that there is no overtime in casting because it is loaded fully by machine hours and additional labor will not increase machine capability.

Given the above information, the objective function was Identified as :

Minimize 1380 X1 + 2496 X2 + 4320 X3 + 8 X4 + 8 X5 + 24 X6

VI. Identification Of Constraints

17 of the 19 operations contributing to the total cost to manufacture had sufficient capacity and were left unconstrained since they would not affect the LINDO output. These eliminated operations were left out of this discussion for conciseness. Several operations were not identified as "non-constraints" until the actual initial LINDO models were run. The remaining two operations were then constrained by available overtime and shop capacity. The primary constraints and the formulae expressing these limitations are:

A. Available Wax Assembly Hours without Overtime

The production planning department identified a sufficient labor inefficiency such that an additional 360 hours of labor could be absorbed without overtime. This is described in the model as:

 $3 X_1 + 5 X_2 + 20 X_3 - X_4 \le 360$

Where	3	X1=	The	number	of	hours	per	mold	to	assemble	"А"
	5	X2=	The	н	H	н		н			"B"
	20	X3=	The	н	н	н		н		н	"C"
		x4=	The	number	of	overti	me	hours	use	d.	

B. Investing Mold Handling Constraint

The investing department allocates manpower based upon the number of molds hand-dipped and the number of molds machine-dipped. This equation deals with the hand-dip capacity only. Since the operation is irrespective of the number of pieces per mold, the cost to invest is smaller for larger molds. Each mold gets ten (10) operations which account for 0.1 hrs/operation for a total processing time of 1 hour. Fortuitously, the molds and hours are interchangeable. This is the only operation where this assumption is true. The total available capacity on straight time is 100 molds. The formula for straight time capacity is:

 $X_1 + X_2 - X_5 <= 70$

A similar equation exists for machine-dipped product. Since option C (X3) product is too heavy to dip by hand, the machine process is required. The machine dipping is constrained by the number of frames available for dipping, which is currently 50. Since each assembly requires a machine attachment frame, the only way to increase capacity is to buy more frames. This yields:

 $X_3 - X_6 <= 12$

C. Overtime Constraints

Manufacturing management has established limits for the amount of overtime which does not result in a non-productive morale problems. The limits are established as :

Wax Assembly <= 120 hrs Hand dip <= 60 hrs

Frame dip <= 24 frames

D. Casting Constraints

Available casting capacity on the #1 furnace is 34 hours. The equation relating the two is

6466666

199689

0.3 X₁ <=34

Available casting capacity on the #2 furnace is only 14 hours. This is described as:

 $0.6 X_2 + 0.8 X_3 <= 14$

Of the available furnace time, the amount available for centrifugal casting is limited to less than 10 hours. This is due to the turnaround time on the centrifuge table. The resultant equation is:

0.6 X₂ >= 10

E. Market Demand Constraints

The Marketing department predicts that there will be a demand for at least 3,000 castings per month. The equation to meet the minimum requirements is:

20 X_1 + 48 X_2 + 96 X_3 >= 3000

F. Whole Mold Constraint

A solution in which fractional amounts of molds were produced could not be implemented. The model is constrained to produce whole molds by using the number of molds of each process as the variable (rather than the number of pieces) and restricting these variables to be general intergers. IX. Solution

LINDO Run #1 attached shows the optimum solution for the problem previously described. The total cost to produce 3000 parts per month is \$179,236.00. The Process Option mix utilized to reach this optimum is:

Process Option A: 81 Molds (1620 pieces) Process Option B: 11 Molds (528 pieces) Process Option C: 9 Molds (864 pieces)

This combination yields a total of 3012 pieces at a cost of \$59.51 each (\$59.75 if only the 3000 could be sold).

X. Plant Capacity Limitations in Effect

A. Assembly

Regular time and overtime hours available are used completely. The dual price indicates that it if additional capacity could be obtained, it would be worth \$145.25/hour.

B. Hand Dip Investing

All regular time capacity is used up, along with one third of the overtime capacity.

C. Frame Investing

Three quarters of the frames available are used. No additional frames are required.

D. Casting Constraints

Less than one third of the Furnace 1 hours available are being used. All of the Furnace 2 hours available were used. Additional capacity for Furnace 2 would be valued at \$1911/hour.

XI. Sensitivity Analysis

Sensitivity analysis allows us to answer "what if?" questions. Beyond the values indicated above for additional plant capacity in specific areas, we will examine three further "what if" situations.

A. What if another product's order quantity was reduced and the number of Furnace 2 hours available was increased from 14 to 20 per month?

LINDO Run #2 (attached) for this altered problem yields the following solution:

The total cost to produce 3000 parts per month is

\$169,852.00. The process option mix utilized to reach this optimum is:

Process Option A: 59 Molds (1180 pieces) Process Option B: 16 Molds (768 pieces) Process Option C: 11 Molds (1056 pieces)

This combination yields a total of 3004 pieces at a cost of \$56.54 each (\$56.62 if only the 3000 could be sold).

B. What if the cost to produce Option C molds was underestimated by 10%?

LINDO Run #3 for this altered problem yields the following solution: The total cost to produce 3000 parts per month is \$189,922.00. The process option mix utilized to reach this optimum is:

Process Option A: 81 Molds (1620 pieces) Process Option B: 11 Molds (528 pieces) Process Option C: 9 Molds (864 pieces)

This combination yields a total of 3012 pieces at a cost of \$62.06 each (\$62.31 if only the 3000 could be sold).

C. Demand variations. Our problem definition indicated that the demand would be at least 3,000 pieces per month. We need

to know what our maximum current capacity is. We must quote prices competitively and we may not get the entire order. We therefore need to know how the production cost per part varies with the quantity produced. Answers to these questions (along with an in-depth understanding of the model) were obtained by:

- a) Performing a parametric analysis on the right hand side of the demand equation, and then
- b) Solving the model at the points where the basis variables change.

Stoppen in the

MAXIMUM CAPACITY

Parametric analysis shows that an artificial variable enters the solution when the demand is 3338.67 pieces per month. The maximum feasible production capacity is at the next smallest integer solution value, which is 3316 pieces per month at a cost of \$63.41 per part.

stoppasty

MODEL ANALYSIS

Starting at 1000 pieces per month, parametric analysis (LINDO Run #4) shows that basis changes occur at eight different production levels (points labeled A through I on the graphs). Description of what happens in the model at

each of these points as the number of pieces per month increases follows.

Note that parametric analysis was done without the general integer restrictions on X1, X2, and X3 so that more information could be obtained through the LINDO software. Results with the restrictions would vary slightly, but the behavior of the model is the same.

POINT A) 1000 pieces per month (LINDO Run #5).

This is the minimum value considered. Only Process Option C is utilized, and no plant capacity restrictions are in effect. Cost per part is \$45.

POINT B) 1153 pieces per month (LINDO Run #6).

Frames for investing are all being used. Cost for additional frames will be incurred after this point (indicated by the entry of the variable X6 into the basis, and the departure of the slack variable from equation 4).

POINT C) 1681 pieces per month (LINDO Run #7).

At this point Furnace 2 capacity is all used up. Additional product is made by Process Option A (enter variable X1, exit slack variable from row 9). Note that Process Option B parts cost less per part to manufacture than Option A parts. However, since Furnace 2 capacity is already consumed, using Process Option B would reduce the number of Process C parts that could be made, which are the least costly to manufacture.

POINT D) 1747 pieces per month (LINDO Run #8).

All wax assembly regular time is consumed, additional parts made will reflect overtime costs. (Exit slack variable from row 2, enter X4).

POINT E) 2547 pieces per month (LINDO Run #9).

All wax assembly overtime is being used. To increase monthly production beyond this point, Process Option B must be used, displacing some of the more desirable Process Option C parts. (Enter variable X2, exit slack variable, row 5).

POINT F) 2810 pieces per month (LINDO Run #10).

All regular time hand-dip investing time is utilized, increased production quantities will require overtime. (Exit row 3 slack variable, enter variable X5).

POINT G) 2860 pieces per month (LINDO Run #11).

As the number of Process A and Process B parts has increased, the number of Process C parts has dropped, due to the Furnace 2 capacity constraint. At this point additional investing frames are no longer required. (Exit variable X6, enter slack variable for row 4).

POINT H) 3258 pieces per month (LINDO Run #12).

The quantity of Process Option B parts has now reached the limit imposed by the Furnace 2 Centrifuge constraint. Further increase in production quantity must utilize Furnace 1, which means Process Option A. As the program continues to prescribe more Process Option B parts and fewer Process Option C parts to accommodate the Wax Assembly overtime constraint, we will now see excess capacity for Furnace 2. (Enter slack variable for row 9 - Furnace 2 constraint, exit slack variable for row 10 - Furnace 2 Centrifuge constraint).

POINT I) 3338 pieces per month (LINDO Run #13).

Finally, with the production load driven to the Hand-Dip Investing processes (Options A and B), all the available Hand-Dip Investing overtime available is being used. No more product can be shifted from Process Option A to Process Option B (which would give us more pieces per allowable mold) because there is no more Furnace 2 Centrifuge processing capacity available. Similarly Process Option C quantities cannot be increased since this process requires the highest rate of Wax Assembly hours per piece.

We have reached our capacity limits for Wax Assembly overtime, Hand-Dip Investing overtime, and Furnace 2 Centrifuge. 3338 pieces per month is the maximum production capacity.

PROCESS TYPE MAP

PIECES PER MONTH

PRODUCT UNIT COST

PIECES PER MONTH

XII. CONCLUSION

The current plant capacity is sufficient to produce the projected sales volume. The cost to manufacture increases with volume which will require a great deal of precision in the marketing projections. Since a lower cost is possible at lower volumes, an overestimate of the sales volume may result in a high bid. Additionally, an underestimation of the sales volume will result in a low quote and eroding profit margins.

The simplest short term fix would be to add additional wax assembly labor. This would be effective up to the full utilization of furnace #1. Clearly, the furnace capacity is a significant constraint. While PCC has authorized the capital package to add additional furnace capacity, this is a long lead time item. The likely increase in volume of the studied product line is insufficient to support a high utilization of the new furnace.

PCC should only accept this product line if sufficient profit is available at the projected volume plus some safety margin. Additionally, strong consideration needs to be given to the customer service aspect of not having any emergency extra capacity.

In summary, this analysis has identified a clear strategy for decision-making and a more comprehensive approach to accepting new product. As the company progresses toward 100% capacity, similar analyses will be more necessary. FILF: FIL' FT73F001 A

PAGE 00001

MIN 1380 X1 + 2496 X2 + 4320 X3 + 8 X4 + 8 X5 + 24 X6 SUBJECT TO LINDO 3 x1 + 5 x2 + 20 x3 - x4 <= 360 ASSYI INVHANDI x1 + x2 - x5 <= 70 Run # 1 INVERAME) X3 - X6 <= 12 ASSYOTI X4 <= 120 INVHOOT X5 <= 60 INVEROTI X6 <= 24 F1) 0.3 X1 <= 34 0.6 X2 + 0.8 X3 <= 14. F21 0.6 X2 <= 10 FZCENTI 20 X1 + 48 X2 + 96 X3 >= 3000 DEMANDI END XI GIN

GIN X2 GIN X3

LP OPTIMUM FOUND AT STEP 47

OBJECTIVE FUNCTION VALUE

11 177484.937

VARIABL	.t	VALUE		RCD	UCEC	COST			
X	(1	78.74	9985		0.00	0000			
x	23	10.62	5000		0.00	0000			
x	(3	9.53	1250		0.00	0000			
x	(4	120.00	0000		0.00	0000			
x	(5	19.37	4985		0.00	0000			
x	(5	0.00	0000		24.00	0000			
RO	W	SLACK OR S	URPLUS	DU	AL PR	ICES			
YZZA	()	0.00	0000	14	45.24	9863			
INVHAND	1	0.00	0000		8.00	0000			
INVERAME		2-46	8749		0.00	0000			
ASSYOT		0.00	0000	1	37.24	9863			
INVHDOT		40-62	5000	-	0.00	0000			
INVEROT		24.00	0000		0.00	0000			
FI		10.37	5005		0.00	0000			
E2	1	0.00	0000	19	11.24	4630			
EZCENT		3-62	4999		0.00	0000			
DEPAND		0.00	0000	- '	91.18	7469			
NO. ITER	ATIO	NS= 4	1						
BRANCHES	5 =	7 DETERM.	= -1.024	1E 2					
SET	X 3	10 <=	9 A	T	I. BN	0=	-178107.19	TWIN=-0	,1000000E+31
SET	XZ	10 <=	11 4	1 .	Z. EN	D =	-178388.75	TWIN= -1	178692+75
SET	X1	T() >=	81 A	T	3. BN	D=	-178600.00	TWIN=-0.	1000000E+31
SET	X 2	TO >=	11 A	T	4. BN	D=	-178676.00	THIN= -1	178600.00
SET	X 3	10 >=	9 4	IT S	5. BN	D=	-179236.00	TWIN= -)	178676.00

NEW INTEGER SOLUTION OF 179236.000

.000 AT BRANCH

12 PIVOT 64

VM/SP CONVERSATIONAL MONITOR SYSTEM

PAGE 00002

QUJECTIVE FUNCTION VALUE

1) 179236.000

	VARIABLE	VALUE		REDUCE	CO 01	12			
	XI	81.00000	U	1412.	. 60000	00			
	X2	11.00000	0	2544.	.0000	00			
	· X3	9.00000	0	4480.	.00000	00			
	X4	118.00000	0	0.	.00000	00			
	X 5	22.00000	0	0.	.00000	00			
	X6	0.00000	С	24.	.0000	00			
	ROW	SLACK OR SURP	LUS	DUAL	PRIC	ES			
	ASSYI	0.00000	0	8.	.00000	00			
	INVHAND)	0.00000	0	8.	.0000	00			
	INVFRAME)	3.00000	0	υ.	.00000	0			
	ASSYOT	2.00000	0	0.	.0000	00			
	INVHDOT)	38.00000	0	0.	.0000	00			
	INVEROTI	24.00000	0	0.	.0000	00			
	F11	9.70001	2	0.	.0000	00			
	F21	0.20000	2	0.	.0000	00			
	FZCENTI	3.40000	1	0.	.0000	00			
*	DEMANDI	12.00000	0	0.	.00000	00			
	NO. ITERA	TIONS= 64							
	BRANCHES=	12 DETERM.= -	1.000E	0					
	POUND ON	OPTIMUM: 178600	.0						
	FLIP	X3 TO <=	9 AT	5	WITH	BND=	-17867	6.00	
	OFLETE	X3 AT LEVEL	5						
	FLIP	X2 TO <=	10 AT	4	WITH	BND=	-17860	0.00	
	SET	X1 TO >=	83 AT	5.	END=	-179	303.94	THIN=-0.10000	000E+31
	DELETE	X1 AT LEVEL	5						
	DELETE	X2 AT LEVEL	4						
	DELFTF	XI AT LEVEL	3						
	FLIP	x2 to >=	12 AT	2	WITH	ENO=	-17869	2.75	
	SET	X3 TO <=	8 A F	3,	FND=	-179	278-38	TWIN=-0.10000	000E+31
	DELETE	X3 AT LEVEL	3						
	DELETE	X2 AT LEVEL	2						
	DELETE	X3 AT LEVEL	1						
	ENUMERATI	IN COMPLETE. BRA	NCHES=	14	b1A0	12=	83		

LAST INTEGER SOLUTION IS THE BEST FOUND RE-INSTALLING BEST SOLUTION...

OBJECTIVE FUNCTION VALUE

1) 179236.000

.

VARIABLE	VALUE	REDUCED COST
X 1	81.000000	1412.000000
X2	11.000000	2544.000000
X 3	9.000000	4480.000000
X4	118.000000	0.000000
XS	22.000000	0.000000

FILF: FIL' FT73F001 A

PAGE 00003

X6	0.00000	24.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
ASSYL	0.000000	8.000000
INVHAND	0.000000	8.000000
[NVFRAME]	3.000000	0.000000
ASSYOT	2.000000	0.000000
INVHDOT)	38.000000	0.000000
INVFROT)	24.000000	0.000000
F1)	9.700012	0.000000
F21	0.200002	0.000000
F2CENTI	3.400001	0.000000
DEPAND	12.000000	0.000000

NO. ITERATIONS= 85 BRANCHES= 14 DETERM. = -1.000E G

RANGES IN WHICH THE BASIS IS UNCHANGED:

		OBJ COEFFICIENT	RANGES
VARIABLE	CURRENT	ALLOWABLE	ALLOWABLE
	COEF	INCREASE	DECREASE
× 1	1380.000000	INFINITY	1412.000000
x2	2496.000000	INFINITY	2544.000000
X 3	4320.000000	INFINITY	4480.000000
X4	8.000000	INFINITY	8.000000
X 5	8.000000	INFINITY	8.000000
X6	24.000000	INFINITY	24.000000
		RIGHTHAND SIDE	RANGES
. ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
ASSY	360.000000	118.000000	2.000000
INVHAND	70.000000	22.000000	38.000000
INVERAME	12.000000	INFINITY	3.000000
ASSYOT	120.000000	INFINITY	2.000000
INVHDOT	60.000000	INFINITY	38.000000
INVEROT	24.000000	INFINITY	24.000000
E1	34.000000	INFINITY	9.700012
F2	14.000000	INFINITY	0.200002
E2CENT	10.000000	INFINITY	3.400001
DEMAND	3000.000000	12.000000	INFINITY

FILF: FIL FT76F0J1 A

VM/SP CONVERSATIONAL MONITOR SYSTEM

PAGE 00001

1380 X1 + 2496 X2 + 4320 X3 + 8 X4 + 8 X5 + 24 X6 MIN SUBJECT TO ASSYI 3 X1 + 5 X2 + 20 X3 - X4 <= 360 x1 + x2 - x5 <= 70 [NVHAND] LINDO Run #2 INVERAME) X3 - X6 <= 12 ASSYOTI X4 <= 120 INVHDOTT X5 <= 60 INVFROT) X6 <= 24 F1) 0.3 X1 <= 34 0.6 X2 + 0.8 X3 <= 20 F21 F2CENT1 0.6 X2 <= 10 DEMANDI 20 X1 + 48 X2 + 76 X3 >= 3000 END GIN X 1 GIN X2 GIN X3

0

LP OPTIMUM FOUND AT STEP.

OBJECTIVE FUNCTION VALUE

1) 166931.375

VARIABLE		V	ALUE		REDUCI	ED COS	T	
X1		5	2.857132		0.	.00000	0	
X2		1	6.666656		0.	.00000	0	
· X3		1	1.904762		0.	.00000	0	
X4		12	0.000000		0.	.00000	U	
X5			0.000000		8.	.00000	0	
Xo			0.00000		24	.00000	0	
804	1	SLACK			DUAL	PRICE	s	
ASSYL		JERCH.	0.000000		411	. 42773	4	
. INVHANDI			0.476194		0	.00000	0	
INVERAMEL			0.095238		0	.00000	U	
ASSYOT			0.000000		403	. 42773	4	
INVHOOT		6	0.000000		0	.00000	0	
INVEROL		2	4.000000		0	.00000	0	
£11		1	8.142853		0	.00000	0	
F21			0.476191		0	.00000	0	
F2CENT)			0.000000		2868	. 56128	0	
DEMANDI			0.000000		-130	.71418	8	
NO. ITERA	110	N S =	0					
BRANCHES=		C DET	FRM.=-67.2	105	U			
SET	x 5	10 <=	16	AT	1.	BND=	-168092.56	TWIN=-0.1000000E+31
SET	X 3	10 <=	11	AT	2.	END=	-169569.56	TWIN=-0.1000000E+31
SET	XI	10 >=	59	AT	3.	END=	-169639.94	TWIN=-0.1000000E+31
SET	X 2	10 >=	16	AT	4.	BND=	-169665.31	TWIN= -169639.94
SET	X3	10 >=	11	AT	5.	BND=	-169852.00	TWIN= -169665+31

NEW INTEGER SOLUTION OF

٠

169852.000

AT BRANCH

5 PIVOT

8

VM/SP CONVERSATIONAL MONITOR SYSTEM

PAGE 00002

UUJECTIVE FUNCTION VALUE

11 169852.000

VAR LABL	c VA	LUC		REDUCE	D CO	ST		
X	1 59	.000000		1412.	.00000	00		
X	2 16	.000000		2544	00000	00		
x	3 11	.000000		4480.	.00000	00		
x	4 117	.000000		0.	.00000	00		
x	5 5	.000000		C.	00000	00		
х	6 0	.000000		24.	.00000	00		
80			21	OUAL	PRIC	FS		
VZZA	1 0	-000000		A	0000	00		
INVHAND	0	.000000		8.	0000	00		
INVERAME	1 1	.000000		0.	00000	00		
ASSYOT	i i	.000000		0.	0000	00		
INVHOUT	1 55	.000000		0.	0000	00		
INVEROT	1 24	.000000		0.	00000	00		
FI	1 16	. 300003		0.	0000	. 00		
F2	1 1	. 600001		0.	00000	00		
E2CENT) 0	.400001		0.	. COOO	00		
DEMAND) 4	.000000		0.	00000	00		
NO. ITER	ATIONS=	8						
BRANCHES	= 5 OETE	$RM_{*} = -1$	000F	0				
BOUND ON	OPTIMUM:	169639.9	,	-				
FLIP	X3 TO <=		10 AT	5	MITH	BNO=	-169665.	51
DELETE	X3 AT	LEVEL	5				1.04.10	
FLIP	X2 TO <=		15 AT	4	WITH	BND=	-169639.	14
DELETE	X2 AT	LEVEL	*					
DELETE	XI AT	LEVEL	3					
DELETE	X3 AT	LEVEL	2					
DELFTE	X2 AT	LEVEL	1	-				
ENUMERAT	TON COMPLET	E. ERANC	HF2=		PIAO	13=	61	

LAST INTEGER SOLUTION IS THE BEST FOUND RE-INSTALLING BEST SOLUTION...

OBJECTIVE FUNCTION VALUE

1) 169852.000

.

X1 59.000000 1412.000000 X2 16.000000 2544.000000 X3 11.000003 4480.000000 X4 117.000000 0.000000 X5 5.000000 0.000000 X6 0.000000 24.000000 X6 0.000000 24.000000 X6 0.000000 24.000000 X6 0.000000 8.000000	VARIABLE	VALUE	REDUCED CUST	
X2 16.000000 2544.000000 X3 11.000000 4480.000000 X4 117.000000 0.000000 X5 5.000000 0.000000 X6 0.000000 24.000000 X6 0.000000 24.000000 X6 0.000000 24.000000 X6 0.000000 24.000000	X 1	59.000000	1412.000000	
X3 11.000000 4480.000000 X4 117.000000 0.000000 X5 5.000000 0.000000 X6 0.000000 24.000000 R0W SLACK OR SURPLUS DUAL PRICES ASSY1 0.000000 8.000000	X.7	16.000000	2544.000000	
X4 117-000000 0+000000 X5 5+000000 0+000000 X6 0+000000 24+000000 R0W SLACK OR SURPLUS DUAL PRICES ASSY1 0+000000 8+000000	X 3	11.000000	4480.000000	
X5 5+000000 0+000000 X6 0+000000 24+000000 ROW SLACK OR SURPLUS DUAL PRICES ASSY1 0+000000 8+000000	X4	117.000000	0.000000	
X6 0.000000 24.000000 ROW SLACK OR SURPLUS DUAL PRICES ASSY1 0.000000 8.000000	X5	5.000000	0.000000	
ROW SLACK OR SURPLUS DUAL PRICES ASSY1 0.000000 8.000000	X6	0.000000	24.000000	
ASSY1 0.000000 8.000000	ROW	SLACK OR SURPLUS	DUAL PRICES	
	ASSYI	0.000000	8.000000	

FILF: FIL' FT76FUOL A

A

VM/SP CONVERSATIONAL MON & SYSTEM

Nº Gar

PAGE 00003

INVHANDI	0.000000	8.000000
INVFRAME)	1.000000	0.000000
ASSYOTI	3.000000	0.000000
INVHDOT)	55.000000	0.000000
INVEROT)	24.000000	0.000000
FII	16.300003	0.000000
F21	1.600001	0.000000
F2CENT)	0.400001	0.000000
DEMANDI	4.000000	0.000000

NO. ITERATIONS= 23 PRANCHES= 5 DETERM.= -1.000E 0

.

FILE: FIL FTROFULLA

A VM/SP C

VM/SP CONVERSATIONAL MON' TOR SYSTEM

PAGE 00001

MIN 1340 X1 + 2496 X2 + 5174 X3 + A X4 + B X5 + 24 X6 SUPJECT TO 3 X1 + 5 X2 + 20 X3 - X4 <= 360 ASSYI [NVHAND] x1 + x2 - x5 <= 10 [NVFRAME] X3 - X6 <= 12 ASSYUTE X4 <= 120 X5 <= 60 INVHDDTJ X6 <= 24 INVEROID F1) 0.3 X1 <= 34 F21 6.6 X2 + 0.8 X3 <= 14 F2CENTI 0.6 X2 <= 10 DEMANDI 20 X1 + 49 X2 + 46 X3 >= 3000 END

LP OPTIMUM FOUND AT STEP 7

OBJECTIVE FUNCTION VALUE

11 185624.625

VARIABLE	VALUE	REDUCED COST
XI	78.749985	0.000000
X 2	10.625093	0.000000
× 3	9.531250	0.000000
×4	120.000000	C.000000
×5	17.374985	0.000006
X.6	0.000000	24.600006
80¥	SLACK OR SURPLUS	OUAL PRICES
ASSYL	0.000000	45.171799
INVHANDI	0.000000	8.000000
NVERAMEL	2.462749	0.000000
ASSYOT	0.000020	37.171799
INVHDOT)	40.625000	0.000000
INVEROID	24.000000	0.00000
F11	10.375005	0.000000
F21	3.000000	1544.297360
F2CENT)	3.624999	0.000000
DEMANDI	0.000000	-76.175781

NG. ITERATIONS= 7

RANGES IN WHICH THE BASIS IS UNCHANGED:

		DEJ COEFFICIENT	RANGES
VARIANLE	CURRENT	ALLUWAELE	ALLOWABLE
	COEF	INCREASE	DECREASL
×1	1380.030030	INFINITY	198.249588
×2	2496.000000	1411.928960	237.899689
× 3	5174.000000	317.199463	INFINITY
X 4	8.000000	37.171799	INFINITY
X 5	8.000000	INFINITY	8.000000
X 6	24.000000	INFINITY	24.000000

LINDO Run # 3

FILE: FIL

FTHOFOOL A

			RI	GHTHAND SID	E RANGES	
P-3h		CUR	PENT	ALLOWAB	Lt	ALLOWABLE
		R	HS	INCREAS	F	DECREASE
ASSY		360.00	0000	21.06666	56	38.666672
INVHAND		70.00	0063	11.3749	85	40.0250.00
INVERAME		12.00	0000	INFINI	TY	2.468741
ASSYOT		120.00	0000	21.0666	56	38.666672
INVHEOT		60.00	0000	INFINI	TY	40.625600
INVEPOL		24.00	0000	INFINI	TY	24.000000
· F1		34.00	0000	INFINI	TY	10.375035
F 2		14.00	0000	5.3712	99	7.17785
F2CENT		13.00	0000	INFINI	TY	3.624999
DFMAND		1000.00	0000	257.7775	88 1	40.444412
THE TABL	AU					
5.0W	18	(SIZA	X1	×2	X 3	X 4
1	APT		0.000	0.000	0.004	0.000
ASSY		×3	0.000	0.000	1.000	0.000
INVHAND		X5	0.000	0.000	0.000	0.000
INVERAME	SLK	4	0.000	0.000	0.000	0.000
ASSYOT		X 4	0.100	0.000	0.000	1.000
INVHDOT	SLK	6	0.000	0.000	0.000	0.000
INVEROT	SLK	7	0.036	0.000	0.000	0.000
F1	SLK	8	0.006	0.000	0.000	0.000
F2		XZ	0.000	1.000	0.000	0.000
FZCENT	SLK	10	0.000	0.000	0.000	0.000
DEMAND		×1	1.000	0.000	0.0.10	0.000
ROW		×5	x	6 SLK 2	SLK 3	SLK 4
1		C.000	24.000	45.172	6.00.6	0.000
ASSY		0.000	0.000	2.117	0.000	0.000
INVHAND		1.000	0.000	-) . 344	-1.000	0.000
INVERAME		0.000	-1.000	-0.117	6.000	1.000
ASSYOT		0.000	0.000	0.000	0.000	0.000
INVHOOT		0.000	0.000	0.344	1.000	0.000
INVEROT		0.000	1.000	0.000	0.000	0.000
F1		0.000	0.000	0.056	0.000	0.000
F2		0.000	0.000	-0.156	0.000	0.000
FZCENT		0.000	0.000	0.094	0.000	0.000
DEMAND		J.000	0.000	-0.188	0.000	0.000
ROW	51	K 5	SLK	6 3LK 7	SLK 8	SLK 9
1		37-172	0.005	0.000	0.000	1544-297
ASSY		C.117	0.000	0.000	0.000	0.430
INVHAND		-0-344	0.000	J.000	0.000	-3.574
INVERAME		-0.117	0.000	0000.0	0.000	-0.430
ASSYOT		1.000	0.100	000 °C	0.000	0.000
INVHOUT		0.344	1.000	0.000	0.000	3.574
INVEROI		6.000	0.000	1.000	0.000	0.000
F1		0.056	6.000	0.000	1.000	1.406
E 2		-0.156	0.000	0.000	0.000	1.094

PAGE 00002

PAGE DUDU3

FTROFORT A VM/SP CUNVEPSATIONAL MONT R SYSTEM

FZCENT	0.094		C.0	00	0.000	0.000	-0.626
DEMAND	-0.188		0.0	00	1.000	0.000	-4.688
K U M	SLK 1	0 2	LK	11			
1	100F+00	7	6.		- :.1 7E+06		
ASSY	0.000		0.0	18	7.531		
INVHAND	0.000		-0.1	02	19.375		
INVFRAME.	0.000		-0.0	18	2.467		
ASSYOT	0.000		0.0	000	120.000		
INVHOOT	0.000		0.1	02	40.625		
INVEROT	0.000		0.0	000	24.000		
E L	2.000		0.0	23	10.375		
F2	0.000		-0.0	23	10.625		
F2CFNT	1.000		0.0	14	3.625		
DEMANO	0.000		-0.0	78	78.750		

FILE: FIL

FILE: FTI FT72F001 A

PAGE 00001

MIN 1380 X1 + 2496 X2 + 4320 X3 + 8 X4 + 8 X5 + 24 X6 SUBJECT TO 3 X1 + 5 X2 + 20 X3 - X4 <= 360 · ASSYI x1 + x2 - x5 <= 70 [NVHAND] x3 - x6 <= 12 INVFRAME) X4 <= 120 X5 <= 60 ASSYOTI INVHDOT) X6 <= 24 INVFROT) 0.3 X1 <= 34 F11 0.6 X2 + 0.8 X3 <= 14 F21 . F2CENTI 0.6 X2 <= 10 DEMANDI 20 X1 + 48 X2 + 96 X3 >= 1000 END

LP OPTIMUM FOUND AT STEP 10

DBJECTIVE FUNCTION VALUE

1) 44999.9961

VARIABLE	VALUE	REDUCED COST
X 1	0.000000	480.000000
X 2	0.000000	336.000000
X 3	10.416666	0.000000
X4	0.000000	8.000000
X5	0.000000	8.000000
X6	0.000000	24.000000

ROW	SLACK OR SURPLUS	DUAL PRICES
ASSYI	151.666656	0.000000
INVHANDI	70.000000	0.000000
INVERAME	1.583333	0.000000
ASSYOTI	120.000000	0.000000
INVHOOTI	60.000000	0.000000
INVFROT)	24.000000	0.000000
F11	34.000000	0.000000
F21	5.666667	0.000000
F2CENT1	10.000000	0.000000
DEMANDI	0.000000	-45.000000

NO. ITERATIONS= 10

RANGES IN WHICH THE BASIS IS UNCHANGED:

			081	COEFFICIENT	RANGES	
VAR	TABLE	CURRENT		ALLOWABLE	ALLOWABLE	
		COEF		INCREASE	DECREASE	
	×1	1380.000000		INFINITY	480.000000	
	X2	2496.000000		INFINITY	336.000000	
	X 3	4320.000000		672.000000	4320.000000	
	X4	3.000000		INFINITY	8.000000	
	X 5	8.000000		INFINITY	8.000000	
	X 6	24.000000		INFINITY	24.000000	

LINDO Run # 4

× . .

•

PAGE 00002

					RIGHTHAND	SIDE RANG	ES	
	ROW		CU	RRENT	ALLO	WABLE	ALL	OWABLE
				RHS	INCR	INCREASE		CREASE
	ASSY		360.0	00000	INF	INITY	151.	666656
INV	HAND		70.0	00000	INF	INITY	70.	000000
INVE	RAME		12.0	00000	INF	INITY	1.	583333
AS	SYOT		120.0	00000	INF	INITY	120.	.000000
· INV	HDOT		60.0	00000	INF	INITY	60.	.000000
INV	FROT		24.0	00000	INF	INITY	24.	.000000
	FL		34.0	00000	INF	INITY	34.	.000000
	F2		14.0	00000	INF	INITY	5.	.666667
F2	CENT		10.0	00000	INF	INITY	10.	.000000
DE	MAND	1	000.0	00000	152.0	00000	1000.	.000000
v	AR	v	AR	PIVOT	RHS	DUAL P	RICE	LBO
0	υr	I	N	ROW	VAL	BEFORE	PIVOT	VAL
					1000.00	-45.0	000	45000.0
SLK	4		X6	. 4	1152.00	-45.0	000	51840.0
SLK	9		×1	9	1680.00	-45.2	500	75731.9
SLK	2		X4	2	1746.67	-69.0	000	80331.9
SLK	5		×2	5	2546.61	-70-2	000	136492.
SLK	3		X 5	3	2809.23	-89.9	531	160110.
	X6	SLK	4	4	2859.56	-90.7	656	164678.
SLK	10	SLK	9	10	3257.78	-91.1	875	200991.
SLK	6	ART		6	3339.67	-132.	143	211680.
					3500.00	- INF	INITY	INFEASIBLE

FILE: FILF FT79F001 A

VM/SP CONVERSATIONAL MONITOR SYSTEM

PAGE 00001

MIN 1380 X1 + 2496 X2 + 4320 X3 + 8 X4 + 8 X5 + 24 X6 SUBJECT TO ASSY1 3 X1 + 5 X2 + 20 X3 - X4 <= 360 INVHAND) X1 + X2 - X5 <= 70 INVERAMEL X3 - X6 <= 12 X4 <= 120 ASSYOT INVHDOTI X5 <= 60 INVEROTE X6 <= 24 0.3 X1 <= 34 F11 FZI 0.6 X2 + 0.8 X3 <= 14 F2CENT) 0.6 X2 <= 10 20 X1 + 48 X2 + 96 X3 >= 1000 DEMANDI END

LP OPTIMUM FOUND AT STEP 1

OBJECTIVE FUNCTION VALUE

11 44999.9961

VARIABLE	VALUE	REDUCED COST
×L	0.000000	480.000000
5X	0.000000	336.000000
X 3	10.416666	0.000000
X 4	0.000000	8.000000
X 5	0.000000	8.000000
X6	0.000000	24.000000
		00000 0000000
ROW	SLACK OR SURPLUS	DUAL PRICES
ASSYJ	151.666656	0.000000
INVHANDI	70.000000	0.000000
INVERAMES	1.583333	0.000000
ASSYOTI	120.000000	0.000000
INVHDOTE	60.000000	0.000000
INVEROTI	24.000000	0.000000
F1)	34.000000	0.000000
F21	5.666667	0.000000
FZCENTI	10.000000	0.000000
DEMANDI	0.000000	-45.000000

NO. ITERATIONS=

RANGES IN WHICH THE BASIS IS UNCHANGED:

1

		OBJ	COEFFICIENT	RANGES
VARIABLE	CURRENT		ALLOWABLE	ALLUWABLE
	COEF		INCREASE	DECREASE
× 1	1380.000000		INFINITY	480.000000
X 2	2496.000000		INFINITY	336-000000
×3	4320.000000		672.000000	4320.000000
X 4	8.000000		INFINITY	8.000000
X 5	8.000000		INFINITY	8.000000
X6	24.000000		INFINITY	24.000000

LINDO RUN#5

2 1

4

		RIGHTHAND SIDE RANGE	S	
ROW	CURRENT	ALLOWABLE	ALLOWABLE	
	RHS	INCREASE	DECREASE	
ASSY	360.000000	INFINITY	151.666656	
INVHAND	70.000000	INFINITY	70.000000	
INVFRAME	12.000000	INFINITY	1.583333	
ASSYOT	120.000000	INFINITY	120.000000	
INVHDOT	60.000000	INFINITY	60.000000	
INVFROT	24.000000	INFINITY	24.000000	
F1	34.000000	INFINITY	34.000000	
F2	14-000000	INFINITY	5.666667	
F 2 CENT	10.000000	INFINITY	10.000000	
DEMAND	1000.000000	152.000000	1000.000000	

FILE: EIL' FT54F001 A

VM/SP CONVERSATIONAL MONITUR SYSTEM

PAGE 00001

MIN 1380 X1 + 2496 X2 + 4320 X3 + 8 X4 + 8 X5 + 24 X6 SUBJECT TO 3 X1 + 5 X2 + 20 X3 - X4 <= 360 ASSYI INVHAND) X1 + X2 - X5 <= 70 INVERAME) X3 - X6 <= 12 ASSYOT) X4 <= 120 INVHOOT) X5 <= 60 INVEROTI X6 <= 24 F11 0.3 X1 <= 34 0.6 X2 + 0.8 X3 <= 14 F21 F2CENTI 0.6 X2 <= 10 DEMANDI 20 X1 + 48 X2 + 96 X3 >= 1153 END

LP OPTIMUM FOUND AT STEP 1

OBJECTIVE FUNCTION VALUE

1) 51885+2461

.

VARIABLE	VALUE	REDUCED COST
×t	0.000000	475.000000
X.2	0.000000	324.000000
× 3	12.010416	0.000000
X4	0.000000	8.000000
X5	0.000000	8.000000
×6	0.010417	0.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
ASSYI	119.791656	0.000000
[NVHAND]	70.000000	0.000000
INVFRAMES	0.000000	24.000000
ASSYDTI	127.000000	0.000000
[NVHDOT]	60.000000	0.000000
INVFROT)	23.989578	0.000000
F1)	34.000000	0.000000
F2)	4.391666	0.000000
F2CENT)	10.000000	0.000000
DEMANDI	0.000000	-45.250000

NO. ITERATIONS= 1

RANGES IN WHICH THE BASIS IS UNCHANGED:

			081	COEFFICIENT	RANGES
VAR	TABLE	CURRENT		ALLOWABLE	ALLOWABLE
		COEF		INCREASE	DECREASE
	× 1	1380.000000		INFINITY	475.000000
	×2	2496.000000		INFINITY	324.000000
	X 3	4320.000000		648.000000	4344.000000
	X 4	8.000000		INFINITY	8.000000
	×5	8.000000		INFINITY	8.000000
	X6	24.000000		648.000000	24.000000

LINDO Run #6

	R	IGHTHAND SIDE RANG	562
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
ASSY	360.000000	INFINITY	119.791656
INVHAND	70.000000	INFINITY	70.000000
INVERAME	12.000000	0.010417	23.989578
ASSYOT	120.000000	INFINITY	120.000000
INVHOOT	60.000000	INFINITY	60.000000
INVEROT	24.000000	INFINITY	23.989578
F1	34.000000	INFINITY	34.000000
F 2	14.000000	INFINITY	4.391666
F2CENT	10.000000	INFINITY	10.000000
DEMAND	1153.000000	527.000000	1.000000

FILE: FIL: FT56F001 A

LINDO

Run #7

THI

PAGE 00001

MIN 1380 K1 + 2496 X2 + 4320 X3 + 8 X4 + 8 X5 + 24 X6 SUBJECT TO 3 X1 + 5 X2 + 20 X3 - X4 <= 360 ASSYI x1 + x2 - x5 <= 70 INVHANDI INVERAMEL X3 - X6 <= 12 X4 <= 120 ASSYOTI X5 <= 60 INVHDOT) X6 <= 24 INVEROT) 0.3 X1 <= 34 F11 F21 0.6 X2 + 0.8 X3 <= 14 0.6 X2 <= 10 F2CENT) 20 X1 + 49 X2 + 96 X3 >= 1681 DEMANDI END

LP OPTIMUM FOUND AT STEP 1

OBJECTIVE FUNCTION VALUE

1) 75800.9375

VARIARIE	VALUE	REDUCED COST
¥1	0-049995	0.000000
*2	0-000000	893.999756
*3	17-500000	0.000000
*4	0-000000	8-000000
*5	0-000000	8.000000
X6	5.500001	0.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
ASSYI	9.849994	. 0.000000
[NVHAND]	69.949997	0.000000
NVFRAME)	0.000000	24.000000
ASSYOTI	120.000000	0.000000
INVHOOT)	60.000000	0.000000
INVEROT)	18.499985	0.000000
F11	33.985001	0.000000
E21	0.000000	2850.000000

F2)	0.000000	2850.000000
F2CENT)	10.000000	0.000000
DEMANDI	0.000000	-69.000000

NO. ITERATIONS= 1

RANGES IN WHICH THE BASIS IS UNCHANGED:

		091	COEFFICIENT	RANGES
VARIABLE	CURRENT		ALLOWABLE	ALLOWABLE
	COEF		INCREASE	DECREASE
×1	1380.000000		INFINITY	475.000000
×2	2496.000000		INFINITY	893.999756
X3	4320.000000		1191.999760	INFINITY
X4	8.000000		INFINITY	8.000000
X5	R.000000		INFINITY	8.000000
X6	24.000000		1191.999760	24.000000

· Calet

FILE: FILE FIS6F001 A

		DICUTUAND STOE DANCES	
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
ASSY	360.000000	INFINITY	9.849994
INVHAND	70.000000	INFINITY	69.949997
INVERAME	12.000000	5.500001	18.499985
ASSYOT	120.000000	INFINITY	120.000000
INVHDOT	60.000000	INFINITY	60.000000
INVFROT	24.000000	INFINITY	18.499985
F1	34.000000	INFINITY	33.985001
F2	14.000000	0.008332	4-400001
F2CENT	10.000000	INFINITY	10.000000
DEMAND	1681.000000	65.666626	0-999900

FILE: FIL' FT58F001 A

PAGE 00001

MIN 1380 X1 + 2496 X2 + 4320 X3 + 8 X4 + 8 X5 + 24 X6 SUBJECT TO 3 X1 + 5 X2 + 20 X3 - X4 <= 360 ASSYI [NVHAND] x1 + x2 - x5 <= 70 [NVFRAME] x3 - x6 <= 12 X4 <= 120 ASSYDTI X5 <= 60 INVHDOTI X6 <= 24 INVFROTI F1) 0.3 X1 <= 34 F2) 0.6 X2 + 0.8 X3 <= 14 0.6 X2 <= 10 F2CENT1 20 X1 + 48 X2 + 96 X3 >= 1747 DEMANDI END

LP OPTIMUM FOUND AT STEP 1

OBJECTIVE FUNCTION VALUE

1) 80355.3750

VARIABLE	VALUE	REDUCED COST
X1	3. 34 9995	0.000000
X.2	0.000000	842.799316
X 3	17.500000	0.000000
X 4	0.050006	0.000000
X5	0.000000	8.000000
X6	5.500001	0.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
ASSYI	0.000000	8.000000
INVHANDI	66.649994	0.000000
NVFRAME)	0.000000	24.000000
ASSYOTI	119.949982	0.000000
INVHOOT)	60.000000	0.000000
INVEROT)	18.499985	0.000000
EII	12.994995	0.000000

FD	32.444443	0.000000
F21	0.000000	2793.999020
F2CENTI	10.000000	0.000000
DEMANDI	0.000000	-70.199997

1

NO. ITERATIONS=

RANGES IN WHICH THE BASIS IS UNCHANGED:

		OBJ	COEFFICIENT	RANGES
VARIABLE	CURRENT		ALLOWABLE	ALLOWABLE
	COEF		INCREASE	DECREASE
XI	1380.000000		INFINITY	465.666504
×2	2496.000000		INFINITY	842.799316
X 3	4320.000000		1123.732420	INFINITY
×4	8.000000		131.687393	8.000000
X 5	8.000000		INFINITY	8.000000
X6	24.000000		1123.732420	24.000000

LINDO Run #8

· * .i

.

	4	IGHTHAND SIDE RANG	GES	
ROW	CURRENT	ALLOWABLE	ALLOWABLE	
	RHS	INCREASE	DECREASE	
ASSY	360.000000	0.050006	119.949992	
INVHAND	70.000000	INFINITY	66.649994	
INVERAME	12.000000	5.500001	18.499995	
ASSYOT	120.000000	INFINITY	119.949982	
INVHDOT	69.000000	INFINITY	60.000000	
INVEROT	24.000000	INFINITY	18.499995	
F1	34.000000	INFINITY	32.994975	
F2	14.000000	0.558332	0.007144	
FZCENT	10.000000	INFINITY	10.000000	
DEPAND	1747.000000	799.666504	0.333372	

FILE: FIL FT60F001 A VM/SP CONVERSATIONAL MON' "OR SYSTEM

PAGE 00001

MIN 1380 X1 + 2496 X2 + 4320 X3 + 8 X4 + 8 X5 + 24 X6 SUBJECT TO 3 X1 + 5 X2 + 20 X3 - X4 <= 360 ASSYI [NVHAND] X1 + X2 - X5 <= 70 INVFRAMEJ X3 - X6 <= 12 ASSYOT) X4 <= 120 INVHOOTI X5 <= 60 INVEROTI X6 <= 24 0.3 X1 <= 34 FIL F21 0.6 X2 + 0.8 X3 <= 14 F2CENTI 0.6 X2 <= 10 DEMAND) 20 X1 + 49 X2 + 96 X3 >= 2544 END

LP OPTIMUM FOUND AT STEP 0

OBJECTIVE FUNCTION VALUE

1) 136304.750

		ACOUCCA COST	
VARIABLE	VALUE	REDUCED CUST	
×l	43-199982	0.000000	
×2	0.000000	842.799316	
X 3	17.500000	0.000000	
X4	119.599991	0.000000	
X 5	0.000000	8.000000	
X 6	5.500001	0.000000	
ROW	SLACK OR SURPLUS	DUAL PRICES	
ASSYI	0.000000	8.000000	
[NVHAND]	26.800003	0.000000	
INVERAME!	0.000000	24-000000	
ASSYOTI	0.399994	0.000000	
INVHDOTI	60.000000	0.000000	
INVEROTI	19.499985	0.00000	
F1)	21.039993	0.000000	
F21	0.000000	2793.999020	
F2CENTI	10.000000	0.000000	
DEMANDI	0.000000	-70.199997	

NO. ITERATIONS= 0

RANGES IN WHICH THE BASIS IS UNCHANGED:

			081	COEFFICIENT	RANGES
VAR	ABLE	CUPRENT		ALLOWABLE	ALLOWABLE
		COEF		INCREASE	DECREASE
	XI	1380.000000		INFINITY	465.666504
	×2	2496.000000		INFINITY	842.799316
	X 3	4320.000000		1123.732420	INFINITY
	X4	8.000000		131.687393	8.000000
	X5	8.000000		INFINITY	8.000000
	X6	24.000000		1123.732420	24.000000

LINDO Run # 9

1

17

1.100

		RIGHTHAND SIDE RANGES	
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
ASSY	360.000000	119.599991	0.199994
INVHAND	70.000000	INFINITY	26.800003
INVERAME	12.000000	5.500001	18.499935
ASSYOT	120.000000	INFINITY	0.399994
INVHOOT	60.000000	INFINITY	60.000000
INVEROT	24.000000	INFINITY	18.499985
Fl	34.000000	INFINITY	21.039993
F2	14.000000	0.057142	4.400001
FZCENT	10.000000	INFINITY	10.000000
DEMAND	2544.000000	2.666628	797.333252

FILE: FILI FT62F001 A

PAGE 00001

MIN 1330 X1 + 2496 X2 + 4320 X3 + 8 X4 + 8 X5 + 24 X6 SUBJECT TO 3 X1 + 5 X2 + 20 X3 - X4 <= 360 ASSYI INVHAND) X1 + X2 - X5 <= 70 x3 - x6 <= 12 INVERAMEL ASSYOT) X4 <= 120 INVHDOT) X5 <= 60 INVERDI X6 <= 24 0.3 X1 <= 34 F1) 0.6 X2 + 0.8 X3 <= 14 F21 F2CENTI 0.6 X2 <= 1J DEMANDI 20 X1 + 48 X2 + 96 X3 >= 2810 END

LP OPTIMUM FOUND AT STEP 2

OBJECTIVE FUNCTION VALUE

11 160180.250

VARIABLE	VALUE	REDUCED COST
×1	63.906235	0.000000
×2	6.171875	0.000000
X3	12.871094	0.000000
X4	120.000000	0.000000
X 5	0.078122	0.000000
X6	0.871094	0.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
ASSYI	0.000000	142.437393
INVHANDI	0.000000	8.000000
INVERAME	0.000000	24.000000
ASSYOT	0.000000	134.437393
INVHDOT)	59.921875	0.000000
INVFROT)	23.128891	0.000000
F11	14.828129	0.000000
F21	0.000000	1900.932130
F2CENT1	6.296874	0.000000

0.000000

NO. ITERATIONS= 2

DEMANDI

RANGES IN WHICH THE BASIS IS UNCHANGED:

			OBJ	COEFFICIENT	RANGES
VAR	TABLE	CURRENT		ALLOWABLE	ALLOWABLE
		COEF		INCREASE	DECREASE
	X1	1380.000000		INFINITY	405.531982
	X 2	2496.000000		1737.994870	860.399902
	X3	4320.000000		1147.200200	INFINITY
	X4	8.000000		134.437373	INFINITY
	X 5	3.000000		INFINITY	8.000000
	X6	24.000000		1147.200200	24.000000

-90.765610

LINDO Run # 10

FILE: FILE FT62FOGL A VM/SP CONVERSATIONAL MONTOR SYSTEM

		RIGHTHAND SIDE RANGES		
ROW	CURPENT	ALLOWABLE	ALLOWABLE	
	RHS	INCREASE	DECREASE	
ASSY	360.000000	U.227264	7.433340	
INVHAND	70.000030	0.078122	59.921875	
INVERAME	12.000000	0.871094	23.128891	
ASSYOT	120.000000	0.227264	7.433340	
INVHDOT	60.000000	INFINITY	59.921875	
INVFROT	24.000000	INFINITY	23.128891	
F1	34.000000	INFINITY	14.828129	
F2	14.000000	0.021738	2.027273	
FZCENT	10.000000	INFINITY	6-296874	
DEMAND	2810.000000	49.555573	0.769201	

FILE: FILE FT64F001 A

VM/SP CONVERSATIONAL MONIT'R SYSTEM

PAGE 00001

1380 X1 + 2496 X2 + 4320 X3 + 8 X4 + 8 X5 + 24 X6 MIN SUBJECT TO ASSY) 3 X1 + 5 X2 + 20 X3 - X4 <= 360 x1 + x2 - x5 <= 70 INVHAND) x3 - x6 <= 12 INVFRAME 1 ASSYOTI X4 <= 120 (INVHOOT) X5 <= 60 INVEROTI X6 <= 24 0.3 X1 <= 34 FII F21 0.6 X2 + 0.9 X3 <= 14 FZCENTI 0.6 X2 <= 10 DEMANDI 20 X1 + 48 X2 + 96 X3 >= 2860 END

1

LP OPTIMUM FOUND AT STEP

OBJECTIVE FUNCTION VALUE

1) 164718.687

VARIABLE	VALUE	REDUCED COST
×1	67.812495	0.000000
×2	7.343750	0.000000
X3	11.992188	0.000000
X4	120.000000	0.000000
X5	5.156246	0.000000
X6	0.000000	24.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
ASSYI	0.000000	145.249863
INVHAND)	0.000000	8.000000
INVERAMEL	0.007812	0.000000
ASSYOTE	0.000000	137-249863
(TOGHVN1	54.943750	0.000000
INVFROT)	24.000000	0.000000
F11	13.656254	0.000000
F2)	0.000000	1911-244630
F2CENTI	5.593749	0.000000

0.000000

NO. ITERATIONS= 1

· DEMANDI

RANGES IN WHICH THE BASIS IS UNCHANGED:

			08J	COEFFICIENT	RANGES
VAR	TARLE	CURRENT		ALLOWABLE	ALLOWABLE
		COEF		INCREASE	DECREASE
	X 1	1380.000000		INFINITY	407.732178
	×2	2496.000000		1747-423580	878.399658
	X 3	4320.000000		1171.199950	INF INITY
	X 4	9.000000		137.249863	INFINITY
	X 5	8.000000		INFINITY	8.000000
	X6	24.000000		INFINITY	24.000000

-91.187469

LINDO Run #11

1 9

. A state

		RIGHTHAND SIDE RANGES	
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
ASSY	360.000000	0.066664	59.666687
INVHAND	70.000000	5.156246	54.843750
INVERAME	12.000000	INFINITY	0.007812
ASSYOT	120.000000	0.066664	59.666687
INVHOOT	60.000000	INFINITY	54.843750
INVFROT	24.000000	INFINITY	24.000000
F1	34.000000	INFINITY	13.656254
F2	14.000000	0.018181	6.714285
F2CENT	10.000000	INFINITY	5.593749
DEMAND	2860.000000	397.777588	0.444424

FT64F001 A

FILE: FILE FT66F001 A

PAGE 00001

1380 X1 + 2496 X2 + 4320 X3 + 8 X4 + 8 X5 + 24 X6 MIN SUBJECT TO 3 X1 + 5 X2 + 20 X3 - X4 <= 360 ASSYI x1 + x2 - x5 <= 70 [NVHAND] INVERAMEN x3 - x6 <= 12 X4 <= 120 ASSYOTI INVHDOTI X5 <= 60 X6 <= 24 INVEROTI 0.3 X1 <= 34 F1) 0.6 X2 + 0.8 X3 <= 14 F21 F2CENT) 0.6 X2 <= 10 20 X1 + 48 X2 + 96 X3 >= 3258 DEMANDI END

LP OPTIMUM FOUND AT STEP 1

OBJECTIVE FUNCTION VALUE

1) 201020.437

VARIABLE	VALUE	REDUCED COST
×1	98.928558	0.000000
×2	16.666656	0.000000
X 3	4.994047	0.000000
X4	120.000000	0.000000
X5	45.595230	0.000000
· X 6	0.000000	24.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
ASSYI	0.000000	418.285889
[NVHAND]	0.000000	8.000000
INVERAME	7.005952	0.000000
ASSYOTI	0.000000	410.285999
(INVHDOT)	14-404765	0.000000
INVEROID	24.000000	0.000000
F11	4.321434	0.000000
F21	0.004762	0.000000
F2CENT)	0.000000	2912.382810

0.000000

1

ND. ITERATIONS=

DEMANDI

RANGES IN WHICH THE BASIS IS UNCHANGED:

			08J	COEFFICIENT	RANGES
VARIA	AL E	CURRENT		ALLOWABLE	ALLOWAGLE
		COEF		INCREASE	DECREASE
	×1	1380.000000		INFINITY	407.733398
	x 2	2496.000000		1747.430180	INFINITY
	X 3	4320.000000		2297.601070	INFINITY
	X4	9.000000		410.285889	INFINITY
	X 5	8.000000		INFINITY	8.000000
	X6	24.000000		INFINITY	24.000000

-132-142914

LINDO Run #12

12 dit

.

PAGE 00002

		RIGHTHAND SIDE RANGES	
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
ASSY	360.000000	0.033333	16.805557
INVHAND	70.000000	45.595230	14.404765
INVFRAME	12.000000	INFINITY	7.005952
ASSYOT	120.000000	0.033333	16.005557
INVHOOT	60.000000	INFINITY	14.404765
INVEROT	24.000000	INFINITY	24.000000
FL	34.000000	INFINITY	4.321434
F2	14.000000	INFINITY	0.004762
F2CENT	10.000000	0.003125	2.016669
DEMAND	3258.000000	80.666687	0.222219

1 .

FILE: FILC FT68F001 A

VM/SP CONVERSATIONAL MONTTOR SYSTEM

PAGE 00001

MIN 1380 X1 + 2496 X2 + 4320 X3 + 8 X4 + 8 X5 + 24 X6 SUBJECT TO 3 X1 + 5 X2 + 20 X3 - X4 <= 360 ASSY) X1 + X2 - X5 <= 70 [NVHAND] INVFRAME) x3 - x6 <= 12 X4 <= 120 ASSYOTI INVHOOTI X5 <= 60 X6 <= 24 INVERDES 0.3 X1 <= 34 F1) F21 0.6 X2 + 0.8 X3 <= 14 F2CENTI 0.6 X2 <= 10 DEMANDI 20 X1 + 48 X2 + 96 X3 >= 3338 END

0

LP OPTIMUM FOUND AT STEP

OBJECTIVE FUNCTION VALUE

1) 211591.875

VARIABLE	VALUE	REDUCED COST
×I	113.214279	0.000000
X.2	16.666656	0.000000
X 3	2.851191	0.000000
X4	120.000000	0.000000
.X5	59-880936	0.000000
X6	0.000000	24.000000
ROW	SLACK OR SURPLUS	DUAL PRICES
ASSYI	0.000000	418.285889
INVHAND)	0.000000	8.000000
INVERAMEI	9.146808	0.000000
. ACCHOTA	0.00000	410.285889

ASSYDT	0.000000	410.285869
INVHDOTI	0.119051	0.000000
INVFROT)	24.000000	0.000000
F11	0.035721	0.000000
F21	1.719047	0.000000
F2CENT)	0.000000	2912.382810
DEPANDI	0.000000	-132.142914

0

.NO. ITERATIONS=

RANGES IN WHICH THE BASIS IS UNCHANGED:

			031	COEFFICIENT	RANGES
VARI	ABLE	CURRENT		ALLOWABLE	ALLOWABLE
		COEF		INCREASE	DECREASE
	×1	1390.000000		INFINITY	407.733398
	× 2	2496.000000		1747.430180	INFINITY
	X 3	4320.000000		2297.601070	INFINITY
	X 4	A.000000		410.285889	INFINITY
	X 5	8.000000		INFINITY	8.000000
	X6	24.000000		INFINITY	24.000000

LINDO Run #13

1. 11

Variation of the second			
		RIGHTHAND SIDE RANGES	
ROW	CURRENT	ALLOWABLE	ALLOWABLE
	RHS	INCREASE	DECREASE
ASSY	360.000000	12.033332	0.138893
INVHAND	70.000000	57.880936	0.119051
INVERAME	12.000000	INFINITY	9-148808
ASSYOT	120.000000	12.033332	0.138893
INVHDOT	60.000000	INFINITY	0.119051
INVEROT	24.000000	INFINITY	24.000000
Fl	34.000000	INFINITY	0.035721
F2	14.000000	INFINITY	1.719047
F2CENT	10.000000	1.128124	0.016670
DEMAND	3338.000000	0.666685	80.222183

LP OPTIMUM FOUND AT STEP 10

OBJECTIVE FUNCTION VALUE

1) 44999.9961

VARIABLE	VALUE	REDUCED COST	
X 1	0.000000	480.000000	
×2	0.000000	336.000000	
X 3	10.416665	0.000000	
×4	0.000000	8.000000	
X 5	0.000000	8.000000	
X6	0.000000	24.000000	
ROW	SLACK OF SURPLUS	DUAL PRICES	
ASSYI	151.666656	0.000000	
. [NVHAND]	70.000000	0.000000	
INVFRAME)	1.583333	0.000000	
ASSYOTE	120.000000	0.000000	
INVHOOT)	60.000000	0.000000	
INVFROT)	24.000000	0.000000	
F11	34.000000	0.000000	
F21	5.666667	0.000000	
F2CENT)	10.000000	0.000000	
DEMANDI 0.000000		-45.000000	

10

NO. ITERATIONS=